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Abstract. The objective of the work is to develop the higher order theory for piezoelectric
composite laminated plates with zigzag function and to determine the thermal characteristics of
piezoelectric laminated plate with zig zag function for different aspect ratios (a/h), thickness
ratios (z/h) and voltage and also to evaluate electric potential function by solving second order
differential equation satisfying electric boundary conditions along the thickness direction of
piezoelectric layer. The related functions and derivations for equation of motion are obtained
using the dynamic version of the principle of virtual work or Hamilton’s principle. The
solutions are obtained by using Navier’s stokes method for anti-symmetric angle-ply with
specific type of simply supported boundary conditions. Computer programs have been
developed for realistic prediction of stresses and deflections for various sides to thickness ratios
(a/h) and voltages.

1. Introduction

In this work, actuator is coupled to the top of the composite laminated plate to achieve its thermal
characteristics in non-dimensional form. When a load is applied to the piezoelectric material that
causes deformation to take place which in turn alters the neutralized state and the desired
configuration of the deformed shape can be achieved by the actuator. Piezoelectric materials have the
ability to provide desired transformation from mechanical to electric energy and vice versa. Based on
these characteristics piezoelectric materials can be used as actuators. To improve the accuracy of the
prediction of plate deformation, a higher order shear deformation theory (HSDT) is used.

An improved simple higher-order shear deformation theory of laminated composite plates is
developed. The theory has same dependent variables as in the first-order shear deformation theory
which accounts for parabolic distribution of the diagonal shear strains through the thickness of the
plate and diagonal shear stresses continuity across each layer interface. The present theory predicts the
deflections and stresses more accurately when compared to simple higher-order theories and gives a
much better approximation to the behaviour of laminated plates. Plate structures are major load
carrying elements in structural mechanics, both in aeronautics, on land and in naval engineering. Such
plates are often subjected to significant in plane compression forces and or shear loading. Various
plate theories are available to describe the behaviour of such plates. Depending on the plate geometry
and material properties, it is of interest to utilize one plate theory over another. Since in the middle of
19" century there has been an on-going research and development of plate theories. This research has
resulted mainly three categories in the field of plate theories:

e Classical Plate theory (CPT) or Kirchhoff Plate theory, suitable for thin plates with thickness
to width ratio less than 1/10, on neglecting shear effects.
e Mindlin plate theory or first order shear deformation theory (FSDT) suitable for thick plates
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with thickness to width ratio more than 1/10, on considering shear effects.

e Higher order shear deformation plate theories (HSDT) can represent the kinematics better than
first order shear deformation theory (FSDT) and are especially suitable for composite plates,
on including shear effects.

2. Formulation of HSDT with zig- zag function

A laminated plate of 0 < x <a; 0 <y < b and -h/2< z <h/2 is considered. The displacement components
u, v and w along X, y, z and thickness directions, at any point in the plate are expanded in terms of
thickness coordinate. The plate considered in this work is a 2D plate, the displacement field w (X, v, z,
t) along the plate thickness is kept constant. In this work, in plane displacements are expanded as cubic
functions of the thickness coordinate. The displacement field is expressed as:

U(X, Y,2)= U, (X, Y} 26, (X, Y)+2°05 (X, Y) +2°0, (%, y) + 0,5, (,Y)

V(X, Y, 2) = Vo (%, Y 26, (X, Y+ 22V, (X, Y) +2°6, (X, Y) + 6,5, (X, Y) e ()
w(X, y,z)=w,(X,y)
Where

0,, 0y are rotations about x and y axis at midplane. u,*, v, , 6, 8, are the corresponding higher—order
deformation terms defined at the midplane.
Ok is the Zig-Zag function, defined as:

Z
0, =2(—1)< =&
hk

z is the local transverse coordinate with its origin at the centre of the Kt layer and hg is the
corresponding layer thickness.

The Zig-Zag function is piecewise linear with values of —1 and 1 alternately at the different interfaces.
This function improves slope discontinuities at the interfaces of the smart laminated composite plates.
The strain components are:

2% 3.
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3. Laminate constitutive equations
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£(X,Y,2)is the electro static potential, oy, oy, oy, are the transformed thermal coefficients of
expansion. AT=T (X, Y, z, t) is the temperature increment from the reference.

The governing equations of displacement model are derived using the principle of virtual work or
Hamilton’s principle.
T

j BU+8V—-8K)dt=0 (4)
O

On substituting for 6U, 8V and 6K equations in the virtual work statement in Eq. (4) and integrating
through the thickness of the laminate, it is obtained as:
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From the above equation for total potential energy and by equating the coefficients of each of virtual
displacements 8U43Vo, SWo, 36x, 88y, SUg , 8Vo , 80 , 80, , 8s;, 8S, by equating to zero, the equations of
motion are obtained.

The virtual work statement shown in Eq (4), integrating through the thickness of laminate, the in-
plane, transverse force and moment resultant relations in the form of matrix obtained as:

N £ NT N ™

* * * N*PZ

N £ N

lrar B 07| |- M ™

M — — _ K, M7 M P

M*_Ei|t_>b|gK*— 0 S 1 S (6)
0| 0| D, Mo

-- - = | |o

Q ¢s 0 Q*PZ

Q’ ¢ 0

For homogenous laminates, the equation of motion in terms of displacements is expressed as:
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The Navier’s solutions of simply supported (SS) anti symmetric angle ply laminated plates are
considered. The SS boundary conditions are:

Atedgesx=0andx =a

Uo=0,Wo=0,0,=0,N,y=0,M,=0,uUo =0,0, =0,M, =0,N,,'=0,S,=0 ... (8.1)
Atedgesy=0andy=Dhb

Vo=0,W=0, 0,=0, N,,=0, My =0, v =0, 8, =0, M, '=0, Ny, =0, S,=0 ..(8.2)
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Boundary conditions are satisfied by following expansions.

(%,V,t) Z Z ) sinax cos By

nn (t)sinox cos Py

@
5
<
=

1l

Ms

M

<

m=1 n=1

U, (X,¥,t) = D> D U, (t)sinax cos By
m=1 n=1

V. (%,y,t) = D D Vi (t)cosox sinBy
m=1 n=1

0, (X,y,t) = D> D Xpa(t)cosox sinBy
m=1 n=1

0, (x,y,t)= D D Yo (t)sinox cosBy
m=1 n=1

S, (xy.)=> > S, (t)sinax cos py
m=l n-1

S, (%,y,t) = Z Z S, n(t)cos ox sinBy

8
I
oL
5
i
iR

The coefficients Umn, Vi, Winn, Xone Y mng Zmn,Umn, an, an, Ymn, Simn and Sympof the Navier’s
solutions are calculated by rewriting Equation in the matrix form as:
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The displacements at the mid plane will be defined to satisfy the boundary conditions in Eq.
(8.1&8.2).These displacements will be substituted in governing equations to obtain the equations in
terms of A, B, D parameters. The obtained equations will be solved to find the behavior of the
laminated composite plates. On substitution of Eg. (4) in governing equations of motion in
displacements (7), it is obtained as:
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4. Results and discussions
The material properties used for each orthotropic layer are

Elastic layer (Carbon Epoxy)
E1/E2= 6.6 G12/E2: 7.5 G23/E2= 0.36 E2=E3= 3.3N/ m2 H12= leg:},l13=0.3
a; =2x10° °C1  a, =1.125x 10® °C71, @3 =1.125 x 10° °c~!

PFRC Layer:

Cll = 24lea, C12 = C21 = 726pa, C13 = Cgl = 476Gpa, sz = C23 =7.2Gpa, C44 =1.ZGpa, C55 = Cee
=2.5Gpa, es,= -6.76C/m’, g1:=0,, = 0.037E-9C/V m, g35=10.64E - 9 C/V m

The center deflections and stresses are presented here in non-dimensional form using the following

multipliers:

2
— —ajtasto
me =21ty , M7 =——5——

From plot 1 it is noticed that deflection is maximum for 2 layers for a side to thickness ratio of 10. The
refraction of the smart composite laminated plate tend to decreases as the side of the piezoelectric
actuators increases and the effect of coupling on refractions is quite significant for aspect ratio less
than 3.From plot 2 it is noticed that diagonal shear stress is observed maximum for 2 layers as a
function of side to thickness ratio. The effect of diagonal shear stress deformation and coupling is
quite significant for all values of side thickness ratio a/h < 5. From plot 3 it is noticed that normal
stress is maximum for 4 layers as a function of thickness coordinate. The effect of coupling is to
decrease the stress with increase in thickness coordinate, hence the plot satisfies.
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Fig.1.Non dimensionalised deflection (w) vs no.of layers for a simply supported angle
ply piezoelectric composite laminated plate.
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Fig.2 Non dimensionalized side thickness ratio(a/h) vs transverse shear stress(tyz)
for a simply supported angle ply piezoelectric composite laminated plate.
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Fig.3.Non dimensionalized thickness coordinated(z/h) vs normal stress(cy) for a
simply supported angle ply piezoelectric composite laminated plate.

5. Conclusion

Analytical procedure is developed for thermal analysis of smart composite laminated plates subjected
to electromechanical loading. It is concluded that, the transverse displacement varies non-linearly for
plate subjected to temperature gradient than for the plates subjected to mechanical loads. The use of a
Zig-Zag function is more effective than a discrete layer approach of approximating the displacement
variations over the thickness of each layer separately.
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