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Abstract. The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel
to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The
interface microstructure formation between filler metal and substrates, and spreading of the filler
metal were studied. The interface microstructure between filler metal and aluminum alloy
characterized that the formation of pores and elongated grains with the initiation of micro cracks.
The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as
convex shape, whereas a concave shape has been formed on aluminum side. The major
compounds formed at the fusion zone interface were determined by using X-ray diffraction
techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld
interfaces found to be higher than the substrates owing to the presence of Fe;Als and CuAl,
intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa,
and the tensile fracture occurred at heat affected zone on weak material of the aluminum side
and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation
and its effect on mechanical properties of the welds during gas tungsten arc welding—brazing has
been discussed.

1. Introduction

In recent years, the joining of light weight dissimilar materials is becoming increasingly demand in the
manufacturing of hybrid structures and sub components for various industrial applications. The selection
of materials combination for hybrid structures are depending on their strength, density and metallurgical
properties. The light weight metals such as aluminum and magnesium, which have excellent corrosion
resistance and high specific-strength. Due to their tremendous properties, the importance of these
materials towards lightweight construction in the transportation and chemical industries has led
increased to achieve the aim of versatility of the equipment [1]. However, these materials alone cannot
withstand the required properties for specific applications. To meet their requirements the hybrid column
structures of aluminum alloy to stainless steel has a great interest among enormous industrial
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applications. Conversely, the joining between stainless steel and aluminum alloy has difficulties using
conventional arc welding techniques due to the formation of brittle intermetallic compounds in the
fusion zone [2-5]. To make successful joining between these dissimilar materials solid state welding
methods such as friction stir [6], friction welding [7-13] have been contemplated. Other than the joining
problems, these processes are having several issues of making welds of different joint designs, length
and type of joints. Besides the solid state joining processes a new techniques have been developed using
arc welding processes of gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) with
low heat input method using different fluxes [14]. The researchers studied the joining of these dissimilar
metals successfully by using of new techniques with the tungsten inert gas welding (TIG) - brazing then
this processes act as a welding joint on aluminum side and steel side joint is same as a brazing joint [15].

Most recently this welding method (tungsten inert gas welding-brazing technique) increased an
interest as a major development field in welding of steel and lightweight aluminum alloys. In this
technique, substrates and melting of consumable fillers are melted by TIG arc, and then joint can be
formed. As stated earlier in conventional fusion welding processes the liquid filler metal cannot wet and
spread as a brazing filler on any surface of the steel. To improve the liquid metal wetting angle of the
fillers on substrate surfaces previous studies reported that the noncorrosive flux can increase the liquid
meal wetting angle of fillers in Al brazing and the molten flux easily adhere to the aluminum hot dip
galvanized steel surface [16,17]. However, all these processes are involved in development of
intermetallic phases owing to the interaction time between substrates and filler metal, the solid surface
dissolves into filler metal. In general the intermetallic compounds are more brittle and it will limits the
mechanical properties of the joints when their thickness at interface exceeds more than the permissible
value. Most of the research reports available on cold metal transfer or laser arc brazing of aluminum
alloys to steel [18]. Furthermore, in this study the dissimilar material joining of butt joint using gas
tungsten arc welding — brazing of 304 stainless steel and 5083 Al alloy with the addition of Al-Cu
eutectic filler metal. The weldments were analysed with their seam formation on aluminum side and
steel side, its microstructure and tensile strength of the joints, and crack formation issues were discussed.

2. Experimental Procedure

In the present work, the AA5083 alloy with a thickness of 3 mm and 304 stainless steel (304 SS) (2 mm
thickness) were used as base materials. The filler meal used was 2319 Al-Cu welding wires diameter of
1.2 mm was used. The chemical composition of the base metals used for this work are shown in Table
1. The welding process of gas tungsten arc welding - brazing was done using Esab weld skill 200 HF
welding power source and 15 I/min flow rate of pure argon was selected as shielding gas. The base
metals were machined into the size of 120x60 mm and the surfaces were polished with emery paper and
followed by cleaning with acetone before starting the welding experiment. The thin sheets were prepared
with V-groove shape with an angle of 30° in aluminum alloy side and 40° in stainless steel side. The
welding parameters were optimized by trial and error method with varying the various parameters, and
the optimal parameters of distance of 3 mm between electrode tip to substrate and a travel speed of 110
mm/min were kept constant with varying welding current from 95 A to 180 A. During welding copper
was used as a backing plate, and the Al-Cu filler metal was inserted to the weld pool to make the GTAW-
brazing joints. The schematic view of the GTAW-brazing of stainless steel to aluminum is shown in
figure 1. After completion of welding, the weldments were cut in transverse direction to prepare the
metallographic samples for microstructural evolution and defects analysis. The weldments were etched
with two different etchants such as Keller’s etchant solution (HCI 1.5 ml + HF 1 ml + HNO3 2.5 ml +
H,0 95ml) in aluminum side and Vilella’s etchant solution (C;HsO 100 ml + picric acid 1g + HCI 5 ml).
The microstructures of the welds were examined under optical microscope, and chemical composition
of the weld interfaces were analysed through scanning electron microscope (SEM) and energy dispersive
X-ray spectroscope (EDS). Micro hardness was conducted across the weld joint and mechanical tensile
properties of the welds were tested using universal tensile machine, at a 1 mm/min cross head speed.
The tensile samples were prepared as per the ASTM E8 standard [19], and maximum values of the
tensile strength were taken from the average of three samples.
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Table 1 Chemical composition of the base metals used for the present study

Mn | Mg Fe Si Ti Cr | Cu | Zn Al
5083 Aluminum 0.49 | 425 | 038 | 0.28 | 0.13 | 0.18 | 0.08 | 0.09 | balance
C Mn P Si S Cr Ni N Fe
304 Stainless steel | 0.06 | 1.89 | 0.036 | 0.025 | 0.69 | 18.1 | 8.2 | 0.08 | balance

NOZZ"E\‘ Tungsten Electrode

Ar shielding gas

Aires /Cu-AI filler

~~/W\
B 304SS VA

Backing plate

Figure 1 Schematic view of the GTAW-brazing used for stainless steel and aluminum joining

3. Results and Discussions

The spreading of molten filler metal behavior of on the substrate groove faces has influence on the
welding of stainless to aluminum with GTA welding — brazing process [20]. The wetting behavior of
the filler metal with substrates is different with change in welding current. To understand this
phenomena, welding has been performed using different welding currents. For all welding currents with
in the selected conditions, a smooth and good shape of weld same was made. Joints made at low welding
current values are resulted in unfilled face of the weld seam, whereas the joints formed with the filling
weld seam face and root for the welding currents above 100 A. This may be associated to the different
degree of weld seam temperature with increasing current, the greater the melting of the used filler metal
and improves in wettability of the molten filler metal with the stainless steel. The resulted welds revealed
that the weld seams are clean and are free from the formation any slag particles, which are commonly
produced in gas metal arc welding [21-23]. The macrostructures of the joints exhibited the aluminum
side which has low melting temperature is alike welding joint whilst stainless side observed that there
is no melting occurred and a thin reaction layer is formed between the molten filler and groove surface.
The microstructures of joints across the seam interfaces and aluminum side are illustrated in figure 2.
Most of the studies were reported on evaluation of the interfaces between weld seam and stainless steel
side with the formation of intermetallic compound [3,14]. Song et al. [15] and Zhang et al. [24], have
been reported that the interface of welded seam/stainless steel appeared with three different intermetallic
layers. These intermetallic layers varied in thick with respect to temperatures and location of the weld
joint. They also investigated that the top of the groove characterized with the formation of thick
intermetallic layers with the size of 20 um which is thicker than the other locations of the joint. The
similar observations are found for the weld interface of weld seam and stainless steel characterized with
unequal thickness of intermetallic layer formation along the weld interface. Whereas, the interface of
weld seam to aluminum is also critical issue on the joint formation. The interface properties drastically
varying with the welding current,



ICRAMMCE 2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 330 (2018) 012048 doi:10.1088/1757-899X/330/1/012048

Figure 2 Microstructures of the joints showing (a) HAZ aluminum side (b) interface of aluminum and
Al-Cu filler and (c) Porosity formation on aluminum side

welding procedure, and an easy to form the defects on aluminum side. Due to the variation in melting
temperatures of the substrates, aluminum side always results in sensitive microstructural formation. The
width of HAZ on aluminum side increasing with increasing welding current, and it is observed that the
formation of porosity for joints made at higher welding currents (see fig 2a). The other side of joint
interface of weld seam and aluminum is always depending on the filler metal composition and type of
fillers using for arc brazing [25]. It is observed that the formation of micro cracks for joints made at low
welding currents (see fig 2b), and the magnified view of microstructure is in clear that exhibits the
microstructural cracks and pores adjacent to the weld interface. It is also found that the offset of the
electrode has influence on the filling of molten filler and HAZ formation on aluminum side (an extensive
study on this phenomenon is not indicated in this study). SEM-EDS analysis was carried out on the joint
interfaces to identify the formation of phases of the intermetallic compounds. The chemical content of
the stainless steel/weld seam interface identified that of Al (69.54-71.24 at. %), Fe (18.21-21.98 at. %)
and that of Cr (5.65-6.24 at. %) and Ni (1.54-1.08 at.%) is indicates the formation of Fe,Als compounds.
Whereas, the interface of aluminum/weld seam indicates the content of Al (79.84-85.21 at. %) and Cu
(16.95-13.54 at. %) which is identified as Al,Cu phase [15,18,24].

Vickers micro-hardness of the weld seam and joint interfaces were measured, is shown in figure 3,
it is identified that the hardness rapidly increased in the interface of the joint. The interface of the
stainless steel/weld seam is obtained highest hardness with an average value of 602 HV and hardness of
weld seam/aluminum interface is found to be an average value of 264 HV. The existence of such a high
hardness indicates the presence of intermetallic compounds which can make the joint very brittle and
deteriorates the efficiency and mechanical strength of the joints. The joints tensile strength under tensile
loads indicates that joints strength is distinct at altered welding currents, is illustrated in figure 4. The
joint strength gradually differs when the operating welding currents in between 95 A, and 125 A, and
the average values of joints of maximum strength of 95 MPa at 140 A. The strength of the final joint
comparatively lower at 95 A, since the formation of incomplete brazing caused to low heat input thus
results in lower temperature at joint interface, which will control the improper formation of spreading
and wetting of the molten filler metal, hence instigating of poor mechanical properties. On the contrary,
it is observed that the higher welding currents produces heat input level also higher, thus ensued in a
further decreasing of tensile strength due to the high temperature at weld interface owing to the extreme
melting of the filler metal and aluminum. The inter solubility and reactions between the Fe, Al and Cu
elements there is possibility of formation of weld cracking at the joint interfaces which lowers the joints
strength. To confirm the presence of intermetallic compounds across the tensile fractured faces/paths
under tensile tests, the tensile fractured surfaces were characterized with XRD analysis, are shown in
figure 5. It is confirmed that the joint fracture surfaces contained Fe>Als, FesAl 3 and CuAl, phases. The
brittle nature of these intermetallic compounds of the weld interface limited the mechanical resistance
of the welds and event at low tensile forces it could easily fractured especially its thickness exceeds the
threshold limit value which is about 10 um [26,27]. The SEM observations of the fractured surfaces
were examined that the coarse dimples morphology formation representing the ductile nature of fracture.
It is also observed that there are few dark gray spots appearing along the fracture path, and are associated
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(c) 180 A

with the brittle intermetallic compounds. The presence of these phases along the interfaces will impair
the tensile strength, and also change the fracture path under tensile loads. There are three kinds of tensile
fractures observed for the joints, and these are varying with different welding currents. The existence of
various fracture paths between the weld seam and substrates are depicted in figure 6. As explained earlier
lower welding currents resulted in lower interface temperatures, thus the occurrence of fracture taken
place along the weld seam/aluminum interface owing to the improper bonding formation [28-32].
Whereas, the second type of fracture occurred along the intermetallic layer which is formed in stainless
streel/weld seam interface. The fracture initiated from the top of the weld seam where the intermetallic
layer is thicker compared to other locations of the joint. On the contrary, third type of fracture initiated
from the micro cracks and porosity in the aluminum side fusion zone and propagated into the HAZ of
the aluminum. The maximum strength obtained for the joints where the fracture exists along the
intermetallic layers at stainless steel/weld seam interface.
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4. Conclusions

The dissimilar joining of stainless steel to 5083 aluminum alloys were butt welded using GTA welding
- brazing with the addition of Cu-Al filler metal. The spreading behavior of shows the molten filler
differs with the different welding currents. At lower welding currents an incomplete joint seem was
formed, whereas an excellent weld seam formation was obtained with the complete filling of weld face
and root for the optimum welding currents. The maximum strength of 95 MPa achieved for the joints
attained for optimum conditions. The joints at higher welding currents exhibited the defects formation
and a molten welding joint between aluminum and weld seam interface. The tensile fracture of the joints
occurred at stainless steel/weld seam interface along the intermetallic layer (Fe,Als, FesAljs and CuAl)
for which the joints acquired the maximum tensile strength.
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