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Abstract. To study the effect of room temperature rolling on mechanical properties of 304 

Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for 

different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, 

tensile and hardness tests were performed in accordance with ASTM standards to study the 

effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have 

enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 

90% deformation). The improvement in UTS of processed samples is due to combined effect 

of grain refinement and stress induced martensitic phase transformation. The hardness values 

also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic 

measurements were also conducted to confirm the formation of martensitic phase. 

1. Introduction 

Austenitic stainless steels (ASS) are widely used in various engineering sectors such as automobile, 

chemical and petro-chemical, because of their excellent properties (such as good corrosion resistance, 

excellent weldability, good thermal stability, and superior impact toughness). However, they possess 

low yield strength due to presence of soft austenite (γ) phase which results in making them less 

suitable for structural applications [1]. Various strengthening mechanism for metals exist such as grain 

refinement, transformation strengthening and work hardening. For structural application, material 

should possess high strength to weight ratio. There are various methods for producing high strength 

material via grain refinement routes such as equal channel angular pressing (ECAP), high pressure 

torsion (HTP), multiple compression, hydrostatic extrusion etc., however, the product produced by 

these processes are of high strength but size limitation (i.e. large size products cannot be produced). 

Over 70 % of metal products are produced by rolling process in one or the other way, as rolling is an 

easy method for producing long length sheets [2]. Cold working is a suitable strengthening method as 

ASS has high strain hardening coefficient [3, 4]. Rolling being a cold working process may be 

employed to ASS to improve mechanical properties. 

The transformation of austenite to martensite is the principle phase transformation and 

provides the basis for important structural materials. The ASS can be transformed to martensitic either 
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via heat treatment or plastic deformation. Deformation or strain induced martensite is a unique feature 

of ASS [1]. Two types of martensite namely α'- martensite (BCC) and ε-martensite (HCP) may be 

formed spontaneously upon plastic deformation of ASS, out of these two α'-martensite is 

ferromagnetic. Therefore, paramagnetic ASS becomes ferromagnetic after deformation. Olson et al. 

[5] and Sato et al. [6] have proposed two major phase transformation pathways based on stacking fault 

energy (SFE): (i) γ→ε→α' (SFE ˂ 18 mJ/m2) and (ii) γ→twinned γ→α' (SFE ˃ 18 mJ/m2). At high 

extent of deformation, α'-martensite (thermodynamically more stable) grows at the expense of 

previously formed ε-martensite phase. The present work is focussed on the room temperature rolling 

of 304 ASS and investigation of phase transformation and mechanical behaviour. 

2. Experimental 

The commercially available of Type 304 austenitic stainless steel was used in the present study and 

was procured as 300 mm x 50 mm x 3 mm cold-rolled plate stock. The chemical composition of as 

received material was analyzed and is shown in Table 1. Prior to room temperature rolling, the 

samples of rectangular size 50 mm x 25 mm x 3mm were cut from the cold-rolled plate stock in the 

rolling direction to achieve 30, 50, 70 and 90 % reduction in thickness. Reduction of 0.05 mm per pass 

was given using a standard rolling mill of 110 mm roller diameter and the rolling speed was 8 rpm. 

The plastic strain rates were assumed to be constant throughout the process. Tensile testing of the 

rolled stainless steel was carried out on BISS 25KN using ASTM-E8 substandard specimen with 

gauge length of 16 mm and a crosshead speed of 1 mm/minute. Five samples of each condition were 

testing to ascertain reproducibility. Micro-hardness tests were carried out using UHL VMHT with 

100 gf load and 12 second dwell time at room temperature with indentation speed of 35 µm/s. Before 

hardness measurement, samples were surface polished up to 2000 grit size emery paper followed by 

cloth polishing. Minimum of 10 readings were taken and its average is taken for hardness data. 

Microstructures were captured by using Leica microscope DMI 5000 prior all specimens were 

polished by 2000 grit size emery paper followed by cloth polishing using alumina and a mixture of 

nitric acid and hydrochloric acid (1:3) solution was used as etchant. Room temperature rolled stainless 

steel samples was characterized by using advanced X-ray diffractometer RIGIKU SMARTLAB 3KW 

using Cu Kα radiation with scan rate of 1 °per minute. Magnetic hysteresis loops were obtained by 

using vibrating sample magnetometer (VSM) of QUATUM DESIGN VERSA LAB 3 Tesla.  

Table 1. Chemical composition of 304 austenitic stainless steel. 

Element C Cr Ni Mn Si P S Fe 

Content wt% 0.068 18.2 8.59 1.24 0.408 0.070 0.003 Bal. 

 

3. Results and Discussions 

X-ray diffraction patterns of the 304 austenitic stainless steel specimens before and after room 

temperature rolling are shown in Fig. 1. New diffractions peaks starts emerging after rolling as 

compared with the sample without deformation, indicating that the deformation induced martensite 

transformation occur in 304 austenitic stainless steel during rolling. 
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Figure 1. X-ray diffraction patterns of 304 austenitic stainless steel for different percent reduction. 

 

  
 

  
 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

                                             
                  Figure 2. Microstructure as received and deformed 304 Austenitic Stainless Steel. 
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Fig. 2 shows the optical micrographs of as received and 30, 50, 70 & 90 % deformed 304 

austenitic stainless steel. On rolling, grains are elongated in the rolling direction and the grain size 

reduces of the as-received samples reduces with the deformation. Diffuse nature of grains in 

specimens with 50, 70 & 90 % reduction is a manifestation of severe distortion.  
Stress induced martensitic transformation and twinning due to deformation in austenite (γ) 

can be influenced by the stacking fault energy of the stainless steel, for stainless steels with SFE = 45 

mJ/m2 ,plastic deformation occurs through dislocation glide while direct transformation of  γ→α' is 

reported in stainless steel with SFE below 45 mJ/m2 Whereas, deformation twinning has occurred in 

austenitic SS with SFE in the range of 18-45 mJ/m2 [1] The stacking fault energy (SFE) of the 

austenitic stainless steel is determined by its composition and can be calculated by using the formulae 

[3]. 

SFE (mJ/m2) = −53+0.7 (%Cr) − 6.2 (%Ni) −3.2 (%Mn) + 9.3 (%Mo) 

By using the above formula, SFE of the 304 austenitic stainless steel used for study was found to be 19 

mJ/m2. It is therefore more twin boundaries observed on deformation. 

  
(a)                                                                         (b) 

Figure 3. Effect of room temperature rolling on the tensile properties of 304 austenitic stainless steel. 

  
(a)                                                                       (b) 

Figure 4. Effect of room temperature rolling on hardness of 304 austenitic stainless steel. 

Fig.3 (a) demonstrates the effect of rolling on the stress-strain behavior of 304 austenitic 

stainless steel and Fig.3 (b) provides the summary of stress-strain behavior. The ultimate strength 

increased from 693 MPa (as received) to 1700 MPa (90% reduction). Percentage elongation (ductility 

indicator) of the as received sample was 30 % and drops to 1% approximately with 90% deformation. 

The increase in the ultimate tensile strength is attributed with the transformation of austenite to α'-
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martensite [2, 7]. Deformation induced martensite formed in the specimens after rolling resulted in the 

enhancement of mechanical properties (increased strength & hardness. The effect of rolling on the 

micro-hardness of rolled samples is shown in Fig.4 (a). Each point is a representation of an average of 

10 readings on the rolling surface along the rolling direction. Fig.4 (b) represents the correlation 

between the deformation induced martensite (computed from VSM data) and micro-hardness with the 

percentage reduction. The hardness value of the as received specimen was about 206 VHN which 

increases to 499 VHN approximately for 90% deformed sample.  

 Ferromagnetic phase is developed in the austenitic stainless steel by room temperature 

rolling and is quantified by magnetic measurements. Fig. 5 (a) shows the magnetization plot as a 

function of the magnetic field for as received and deformed samples. Table 2 summarize the magnetic 

properties, volume percent of α'-martensite, γ-austenite and hardness values of as received and rolled 

specimens. Table 2 shows that rolled 304 austenitic stainless steel has austenite and martensite phases. 

These phases have different crystal structures and therefore have different magnetic characteristics. 

Austenitic phase is paramagnetic at room temperature i.e. saturation magnetization should be zero. 

Martensitic phase is ferromagnetic in nature, so it can be helpful in determining the amount of 

ferromagnetic phase in the sample. Deformation of austenite to martensite phase is dependent on 

percent of reduction, which is seen from the hysteresis plots, as the percent of reduction increases 

there is a uniform increase in the saturation magnetization. Negligibly, small magnetization exists in as 

received specimen and after rolling the increase in magnetization of the specimens is noticed and the 

maximum magnetization is obtained for specimen with 90 % room temperature rolling. The formation 

of martensite primarily depends on the percent of reduction in thickness (Fig. 1). The volume 

percentage of α'-martensite transformed was calculated using saturation magnetization [7, 8].   

  
      (a)                                                                           (b) 

Figure 5. (a) Magnetization plotted against magnetic field for as received and after different 

reduction in thickness of specimen after room temperature rolling. (b) Volume % of γ-

austenite and α'-martensite plotted against different percentage reduction. 

Figure 5 (b) shows that with progress in rolling, the volume percent of α'-martensite increases at the 

expense of γ-austenite. This indicates that magnetization in rolled specimen developed because of α'-

martensite transformation [7]. The remanence ratio decreases as percent of deformation increases 

which indicates the magnetic power of austenitic stainless steel are related to the volume percent of α'-

martensite. As the percent reduction increases, there is a fusion of grain boundaries and formation of 

elongated grains, which shows severe distortion in material during rolling process. Deformation 

induced martensite formed in the specimens after rolling resulted in the enhancement of mechanical 

properties (increased strength & hardness). 
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Table 2. Magnetic properties, volume percent of α'-martensite, γ-austenite and hardness values of as 

received   and rolled specimens. 

S.No % Reduction MS (emu/g) 
α'-martensite 

(%) 

γ-austenite 

(%) 
Remanence ratio Hardness(VHN) 

1 0 0.729 0.47 99.53 0.049 208 

2 30% RTR 20.421 13.26 86.74 0.121 349 

3 50% RTR 40.813 26.58 73.42 0.047 461 

4 70% RTR 66.044 42.88 57.12 0.029 462 

5 90% RTR 99.28 64.47 35.53 0.026 499 

RTR: room temperature rolling, MS : saturation magnetization, VHN: Vickers hardness number 

4. Conclusions 

The microstructure, mechanical and magnetic behavior of 304 austenitic stainless steel before and 

after room temperature rolling were characterized and analyzed systematically, the results are as 

follows:    

1. The amount of α'-martensite (Deformation induced martensite) in 304 austenitic stainless steel 

increases with percentage deformation. 

2. The ultimate strength of the 304 austenitic stainless steel increases with the reduction in 

thickness by rolling at room temperature, the ultimate strength increased from 693MPa (as 

received) to 1700 MPa (90% reduction). 

3. The micro-hardness increased with the progress in rolling, from 206 VHN to 499 VHN (90% 

deformation), which is more than twice of as received sample.  

4. Saturation magnetization increases with the increase in percentage reduction (the reason of 

increase is the increase in volume percent ofα'-martensite). 

5. With increase in percentage of reduction of the sample, there is a significant change in grain 

size and grain nature (elongated grains in direction of rolling and diffused nature of 

boundaries of grain boundaries). 
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