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Abstract. Solid particles below 62 μm is classified as fine. In oil producing operation, the most 

commonly used downhole sand screen can only capture solid particles of 140 μm and above. Most 

predictive erosion model is limited to particle size of 100 μm with single phase flow assumption 

because it is commonly believed that erosion due to particles below 100 μm is insignificant and 

typically ignored by oil and gas consultants when proposing facilities design. The objective of this 

paper is to investigate the impact of fines particle on mild steel plate in two-phase flow at different 

collision angles. A two phase flow loop was set up. The average size of fine particle was 60 μm, 

mixed with water with sand to water ratio at 1:65 wt/wt. The mild steel plates were oriented at three 

different impact angles which are -30o, 30o and 90o, with respect to the horizon. Scanning electron 

microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), surface roughness and Vickers 

micro hardness techniques were used to quantify the effects of fine particle on the exposed surface.    
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1.  Introduction 
Solid particle erosion is one of the common problems in oil and gas industry. For many decades, it was 

believed that fine particles, with size below 62 μm, being very small in size; do not significantly damage 

the metallic flow-lines. However, the erosion studies on the microscopic scale have revealed that particles 

of even smaller sizes can be lethal during the production process [1]. They can escape through the most 

commonly used sand screens in the industry, sieve mesh 105. This made fines almost inevitable in oil and 

gas production. They can severely damage the installations at the location where coarse particles cannot 

reach in normal situations [2]. 

Many investigations have been conducted to develop empirical and numerical models of the solid particle 

erosion [2]. Upon careful study, it is found that many existing erosion correlations used in the industry has 

some serious drawback assumptions on single phase flow. It is also found that almost all correlations for solid 

particle erosion focused mainly on sand particle, which by definition is solid particles of size 62 – 2000 μm. 

In one of the most authoritative guidelines on sand controlled erosion for oil and gas industry, DNVGL-RP-

O501 standard (2007) [3], the lower limit of the validity of model is also restricted to sand particles under 

single phase flow condition. The objective of this paper is to conduct a preliminary experimental investigation 

on the erosion caused by fine particle, i.e. solid particles of average size 60 μm; and their impact on mild steel. 
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The motivation is to determine if it is feasible to carry out longer term fine particle erosion research and to 

have a screening assessment of its impact on metallic oil and gas flow lines.  

2.  Literature Review  

2.1. Mechanism of solid particle erosion 

When a particle impacts a surface, it scars the surface. Shapes of these scars depend on many parameters 

including surface material, particle size, and impact angle. Researchers studied these scars to explain the 

mechanism of erosion and generally agree that the mechanism of erosion changes based on the ductility of 

the surface. [4] proposed a micro-geometry erosion model for ductile materials and suggested that erosion 

in ductile materials is the result of micro-cutting. When a particle impacts a surface at a low impact angle, 

it creates a crater. Other particle impacts make the crater larger and also pile up material around the crater. 

The piled up material is eventually removed by continued particle impacts. The micro-geometry model 

under-predicts erosion magnitude from the particles which impact the surface at higher angles compared to 

experimental data. [5] showed that initial erosion is lower than erosion from previously eroded surfaces and 

proposed a macroscopic erosion mechanism. He suggested that particles hitting the surface create shallow 

craters and platelet-like pieces. These platelets are easy to separate from the surface by subsequent particle 

impact as shown in Fig. 1. During the formation of platelets, adiabatic shear heating on the surface and 

work-hardening under the surface occur. The occurrence of these two processes helps platelet formation 

which explains the higher erosion rate for the steady-state condition compared to the initial erosion rate. 

Other solid particle erosion mechanisms for ductile materials are suggested by researchers and can be found 

in literature [6, 7, 8, 9]. Unlike the solid particle erosion mechanism for ductile materials, there is wide 

acceptance of the erosion mechanism for brittle material. It has been suggested that in brittle material, 

erosion is due to crack formation [10, 11, 12]. When a particle hits a brittle surface, it creates lateral and 

radial cracks. Other impacts cause these cracks to grow. These cracks divide the surface into smaller pieces 

which can be removed by other particles impacting the surface as shown in Fig. 2. 

 

 

 

 

 

 

Fig. 1: Schematic of erosion mechanism in ductile material [12], (a): before the impact, (b): crater 

formation and piling material at one side of the crater, (c): separation of material from the surface 

 

Fig. 2: Erosion mechanism by solid particle in brittle material [10, 11, 12] 

Impact particle 
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2.2. Particle properties on erosion 

Review from various researchers [13, 14, 15] yielded that the angularity has a great impact on erosion 

behaviours, whereby sharp particles are more aggressive than rounded ones. In particular, the study on 

erosion causing by angular solid particles has measured the influence of individual angular particles on lead 

and mild steel target surface [13]. [15] utilized sharp angular particles and spherical particles to investigate 

the effect of particles shape on erosion for steel material. They have found that angular particles imposed 

quadruple effect on the erosion as compared to spherical particles. 

The size of particles impinged onto target surface defines the degree of erosion impact on the inner wall. 

The relationship between erosion rate, EE , and particle diameter, pD , was revealed by Desale et al. [16] as 

 � �npE f D� � �E f D�  ,  (1.1) 

where n is known as the particle size factor. According to [17], the value of this ‘particle size factor’ varied 

with particle size distribution, particle velocity, fluid properties, particle-particle interaction, material 

properties as well as experimental conditions. At n = 1, erosion rate has linear relations with sand size. 

Additionally, through the erosion analysis on aluminium alloy (AA 6063) using eight different sized quartz 

particles in between 37.5 μm and 655 μm at two different impact angles of 30º and 90º, Desale et al. [16] 

summed up that at the larger size of sand particles, the higher kinetic energy, thus greater erosion wear was 

observed. [17] studied the relationships amongst erosion rate and flow velocity and particle sizes. Particles 

size of 100 μm – 10 nm were studied, in a flow regime of 5-20 m/s with different volumetric concentration 

of particles. They concluded that there is a threshold velocity and particles size where erosion is significant 

and correlate the power law relationship between average erosion rate and particles concentration, velocity 

and particle size. In general, the rate of erosion is found to be proportional with the ratio of hardness of 

particles (Hp) to hardness of target surface (Ht), defined as  

 � �p tE H H� �E H H� . (1.2) 

Equation (1.2) was introduced by [18]. When the particle to targeted surface hardness ratio is greater than 

unity, erosion will occur. Also, the erosion rate will escalate corresponding to the increase of erodent to 

target hardness ratio. Through the investigation of the impact of particle and target wall materials on 

particles erosion characteristics, [19] also perceived that the increase in hardness of erodent particles will 

develop its erosivity. However, there is a critical hardness value; beyond which the degree of erosion does 

not considerably increase with an increase of its hardness. This shows that sand erosion is susceptible to 

harder sand particles as they shatter less when colliding with target wall. Besides, another important factor 

in erosion calculation is density. This is because denser particles contain more kinetic energy, producing 

greater impact force and generating higher erosion rates [15, 20]. Therefore, hard and dense particles are 

inherently more erosive than soft particles. Typically, density of sand particles in various studies is 

approximately 2650 kg/m3 [21, 22]. Erosion rate is a power-law function of particle impact velocity, defined 

as 

 � �mpE f v� � �E f v�   (1.3) 

3.  Methodology 

3.1 Experimental setup 

The setup and design of the experiment to conduct a single phase flow wet sand impact erosion test is shown 

below. The schematic diagram and experiment setup of the experiment is shown in Fig. 3. 
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Fig. 3: (a) Schematic diagram of the experiment and (b) Actual setup of the mixture flow loop 

3.2 Sample preparation 

The mild steel plates were cut into a square shape with a height of 50 mm and a length of 40 mm. The plates 

were cut by using an abrasive cutter machine. Then the mild steel plates were polished until they are free 

from scale, scratches and rough patches. The fine particles or silica samples average size of 60 μm were 

obtained from a ball mill factory. It is then mixed with water with fines to water ratio of 1:65 by weight. 

Before and after the experiment, the specimen was subjected scanning electron microscopy to produce 

images for comparison. Energy Dispersive X-ray Spectroscopy (EDX) was also applied to the specimen 

before and after the experiments to analyse the differential chemical compositions of the exposed surface. 

The surface roughness of each mild steel plate were also recorded. The average surface roughness recorded 

before the experiment was found to be 0.17 μm. Finally, the specimens were subjected to Vickers micro 

hardness test to check the differential hardness of specimens before and after the experiments. The average 

hardness value recorded before the experiment was found to be 139.23 HV. This value is very close to the 

standard reference value 140 HV for mild steel. 

The plates were placed inside the bombardment chamber at three different impact angles (-30°, 30°, 90° 

with respect to the horizon) and were bombarded with fluid containing fine particles with an average size 

of 60 μm for a fixed time interval of 5 hours. Due to the limitation of the test rigs capability, the flow rate 

and velocity of the fluid in the bombardment chamber were kept constant at 8.6 x 10-4 m3/s and 0.124 m/s 

respectively. The mixture filled up approximately 80% by volume when entering the bombardment 

chamber. The fluid hitting the mild steel plate inside the bombardment. 

 

4.  Results and Discussion 

After 5 continuous hours of bombardment, the region of surface exposed to fine-water mixture showed observable 

and severe pitting, especially near the mixture free surface. Even though pitting is also observable at the bottom of 

the specimen, the distribution of the pits are scattered and the damage to the surface is relatively less. The level of 

surface damage was significantly influenced by the impact angles. From Fig. 4, the highest erosion rate was seen 

at an impact angle of 90° followed by -30 ° and finally 30 °.  At 90°, the accelerated fluid containing fine particles 

does not exhibit any angular slip and imparted maximum energy to the surface of the mild steel plate.  At inclined 

impact angles, the solid particles exhibited angular slip. The impact force by the particle can be split into axial and 

(a) (b) 
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vertical components. At inclined impact angles, the axial component is dominant and contributed to good amount 

of energy to the targeted surface. The energy transfer due to vertical component is almost negligible.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: (a) SEM micrograph of the untreated plate. (b) SEM micrograph of eroded plate at 30°. (c) SEM 

micrograph of eroded plate at -30°. (d) SEM micrograph of eroded plate at 90 °. 

Figure 5: showed the EDX spectrum of the mild steel specimen before and after the experiment. It is clearly seen 

that before the experiment, the exposed surface showed composition of iron (Fe) and carbon (C) while after the 

experiment, the surface chemical composition of mild steel plates was significantly changed. It was noticed that 

some of the fine particles diffused onto the exposed surface of the mild steel plates. The new elements on the surface 

of the plates were believed to be introduced by the fines during the experiment. The EDX spectrum of the eroded 

specimen showed an additional two components, namely silicon and oxygen. This shows that erosion process does 

not only damage, the target surface it also changes its surface composition.    

 

  

 
 
 
 
 
 
 

Fig. 5: EDX spectrum of mild steel specimen (a) before and (b) after experiment 

 

Table 1 showed the surface roughness data for three specimens under investigation. The surface roughness of the 

specimens before experiment was determined to be 0.17 μm. After the experiments, the surface roughness of 30°, 

-30° and 90° were determined to be 0.56, 1.00, and 1.59 μm, respectively. The plate that was placed at an impact 

angle of 90° recorded the highest differential surface roughness, with change exceeded 800%. 

 

 

(a (b

(c (d



6

1234567890‘’“”

ICMMPE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 328 (2018) 012023 doi:10.1088/1757-899X/328/1/012023

Table 1. Surface roughness data 

Impact angle (o) Surface roughness (μm) 
S1 S2 S3 Average 

30 0.587 0.526 0.554 0.556 

-30 1.032 1.043 0.929 1.001 

90 1.678 1.505 1.572 1.585 

 

The Vicker’s micro hardness value of the treated samples as a function of impact angle is shown in Fig. 6. 

The non-eroded specimen was recorded with a hardness value of 139.23 HV. All three specimens recorded 

a reduction in their HV. The mild steel plate that was placed at an impact angle of 90° has the lowest 

hardness value followed by -30° and finally 30° which are 117.03 HV, 125.51 HV and 133.83 HV, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Micro hardness of the eroded mild steel specimen 

 

5.  Conclusions 

This study investigated the impact of wet erosion of mild steel, bombarded with water-fines mixture at 

three different impact angles which are -30°, 30° and 90°. The fines average particle is 60 μm and the water-

fines mixture at a weight ratio of 1:65. It was found that the composition of the mild steel plates after the 

experiment changed significantly. Fine particles compositions were diffused onto the exposed metal 

surface. It could be concluded that fines changed mild steel surface roughness significantly, even for a short 

duration of 5 hours. A surprising 800% degradation of surface roughness was observed for 90o 

impingement. The hardness value of the specimen was observed to be reduced inversely proportional to the 

erosion.   
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