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Abstract. Due to short production runs and measurement error inherent in electronic test and 

measurement (T&M) processes, continuous quality monitoring through real-time statistical 

process control (SPC) is challenging. Industry practice allows the installation of guard band 

using measurement uncertainty to reduce the width of acceptance limit, as an indirect way to 

compensate the measurement errors. This paper presents a new SPC model combining 

modified guard band and control charts (Z chart and W chart) for short runs in T&M process in 

multi-stations. The proposed model standardizes the observed value with measurement target 

(T) and rationed measurement uncertainty (U). S-factor (Sf) is introduced to the control limits 

to improve the sensitivity in detecting small shifts. The model was embedded in automated 

quality control system and verified with a case study in real industry. 

1.  Introduction 

The key characteristics of test and measurement (T&M) manufacturing are short production runs of 

multi-product families and testing at multi-stations. Classical Shewhart control charts, namely x̄ chart 

and R chart have been widely used in statistical process control (SPC) to detect process variable shifts 

in mean and variance [1]. Short production runs render these charts inefficacious as inherent meager 

data do not warrant meaningful control limits [2]. Furthermore, Costa and Castagliola [3] underscore 

the problem of growing risk of false acceptance in SPC due to measurement error. This leads to 

consequences such as unnecessary process adjustment and loss of confidence in SPC.  

In these premises, this research proposes a modified SPC model which combines modified guard 

band and control charts (Z chart and W chart) to address the issues caused by short production runs 

and measurement errors.  The proposed model standardizes the observed value with measurement 

target (T) and rationed measurement uncertainty (𝑈). The organization of the paper is as follow: A 

review of the literature of measurement uncertainty and short run techniques and will be presented in 

the next section. The proposed model and the industrial case study are described in section 3 and 

section 4 respectively. Section 5 discusses the results obtained from the case study. Finally, section 6 

draws conclusion. 
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2.  Literature Review 

2.1.  Short Run approaches 

Several short run charts have been proposed using statistics techniques such as difference chart, 

DNOM (deviation from nominal) chart and standardized charts [1,4]. Difference chart (also called X-

nominal) registers differences between the mean to its nominal/target value [5]. DNOM chart is based 

on ratios of subgroup means to nominal [6]. Useful in a scenario with shifting variances, standardized 

charts with short runs techniques was proposed by Bothe [2] to revise the target value proportionally 

to the amount of dispersion from product to product. It allows the operator to plot different product 

families on a single x̄ chart and R chart.  

Wheeler [5] extends the approach using the Z chart (also called Zed chart) and W chart to measure 

central tendency and dispersion respectively. Consider a process where xij represents the ith response 

on the jth part family member, i = 1, . . ., m, and j = 1, . . ., p. The process response is normalized using 

an estimate of the population standard deviation, denoted by ̂x𝑗
 as: 

 ̂x𝑗
=   

𝑅𝑗

𝑑2
                            (1) 

where 𝑅𝑗 is the average range for the jth part family member; d2 is a statistic constant for subgroup 

size (n) displaying a normally distributed quality characteristic. The Zij values for Z chart are then 

calculated as: 

𝑍𝑖𝑗 =   
𝑥𝑖𝑗 −𝑇𝑗

̂x𝑗

      (2) 

where Tj is the target value for each part family member that can be determined by using historical 

data, specification, or prior experience on the similar parts [1]. Wheeler [5] introduced Z chart (also 

called Zed bar chart) for subgroup data when n > 1. The mean values for Z chart is then calculated as: 

𝑍𝑖𝑗 =   
𝑥̄𝑖𝑗 −𝑇𝑗

̂x̄𝑗

      (3) 

where ̂x̄𝑗
 is an estimate of the population standard deviation of the subgroup mean as:  

̂x̄𝑗
=   

𝑅𝑗

𝑑2√ 𝑛
           (4) 

and the ranges, Rij for the W chart are transformed as follows: 

𝑊𝑖𝑗 =   
𝑅𝑖𝑗

̂x𝑗

                     (5) 

Z chart will have a central line at zero with the upper and lower control limits set at +3 and -3, 

respectively. W chart set its central line at d2 as R= 𝑅;  upper and lower control limits at d2 + 3d3 and 

d2 - 3d3 respectively, where d3 is a statistic constant for subgroup size (n).  

The advantages of Z chart and W chart, are that the measured data from multiple product families 

can be plotted on a single chart and relatively low average run length (ARL) required in comparison to 

x̄ chart and R chart [7]. The disadvantages of Z chart and W chart, are that the sigma is often unknown, 

a separate estimate is usually obtained for each product and this method requires sufficient data to 

negate the fact that the true parameter values used in the calculation of the control limit estimation [8]. 

These charts are inefficiently adopted in some T&M processes due to the measured data are affected 

by measurement error. 

2.2.   Guard band approaches 

The most immediate approach to minimize the measurement errors is by utilizing guard band to 

reduce the width of acceptance limit. Various economic aspects of guard band have been proposed by 

several researchers (e.g., [9]) to ensure the acceptable risk decision in the product conformity. Industry 

practice allows the installation of guard band, e.g., through Guide to the Expression of Uncertainty in 
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Measurement (GUM), published by ISO in 1993 to reduce the width of acceptance limit [10], as an 

indirect way to compensate the measurement errors. Incorporation of stringent control as in Z chart 

and W chart into guard band could potentially aid to screen for assignable causes and to detect early 

quality deterioration in the process. 

3.  Modified SPC model 

3.1.  Overview 

The model standardizes the observed value in relation to the measurement target (T) and measurement 

uncertainty (𝑈). Measurement target is referred as an expected value for a predetermined measurement 

characteristic. The target value is calculated based on repeated measurement with series observations 

for each test station separately and to be revised when the measurement characteristic changes. 

Measurement uncertainty refers to the dispersion of the data that could reasonably be attributed to the 

measurement result [11].  Pythagoras's theorem is used to estimate the process standard deviation with 

population standard deviation and measurement uncertainty as inputs. S-factor (Sf) is introduced as 

separate approaches to the control limits to improve the sensitivity in detecting small shifts. Eight tests 

are proposed to interpret the charts using Nelson’s rules.  

3.2.  Evaluation of measurement uncertainty 

Measurement uncertainty will be evaluated using GUM [10], in four steps as follows: 

 

3.2.1.  Step 1: Identifying all sources of uncertainty. The first step is to identify the output result, Y, 

from N input quantities through a function relation f as in equation (6):  

  Y = f (X1, X2, ..., XN)       (6) 

where Xi is an input quantity that can significantly affect the measurement result. An estimate of the 

output Y, denoted by y, using input estimates x1, x2, ..., xN, as shown in equation (7): 

y = f (x1, x2, ..., xN)          (7) 

Determining the uncertainty of y requires the uncertainties of all the input estimates xi referred as 

standard uncertainties 𝑢(𝑥𝑖). 

 

3.2.2.  Step 2: Evaluating the standard uncertainty. The value for 𝑢(𝑥𝑖) ,  could be obtained from 

either Type A or Type B evaluation. Type A evaluation is characterized by a statistically estimated 

sample standard deviation si, and the associated number of degrees of freedom vi. The sample standard 

deviation of the mean is computed as: 

𝑢(𝑥𝑖) =
𝑆𝑖

√ 𝑟
           (8) 

where r was the number of the independent repeated observations. The r should be large enough to 

ensure the estimated value is reliable that the probability distribution often is assumed to be normal 

[12].  

Type B evaluates a component of measurement uncertainty that has been excluded in Type A 

evaluation. In the evaluation, 𝑢(𝑥𝑖) refers to an assumed probability distribution based on previous 

measurement data, input of experienced personnel, manufacturer’s specification, data provided in 

calibration report [13]. Amongst various distributions exist, (e.g., rectangular, triangular, U-shaped, 

normal.), rectangular distribution is the most common in the analysis of T&M. The accompanying 

standard measurement uncertainty is: 

𝑢(𝑥𝑖) =
𝑎

√3
           (9) 

where a is the semi-range (or half-width) constant set between the upper and lower limits.  
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3.2.3.  Step 3: Computing the Combined Standard Uncertainty. Combined standard uncertainty, 

denoted by 𝑢c(𝑦) is compiled from individual 𝑢(𝑥𝑖), using Summation in Quadrature which is often 

called the law of propagation of measurement uncertainty, as given below: 

𝑢c(𝑦) =  [∑ [𝑐𝑖𝑢(𝑥𝑖)]2𝑛
1 ]

1

2                 (10) 

where ci is the sensitivity coefficient associated with xi. Eq. 10 is valid only if the input quantities Xi 

are independent or uncorrected. In most cases, input quantity Xi is uncorrelated, and sensitivity 

coefficient can be assumed to be 1 [14].  

 

3.2.4.  Step 4: Computing the Expanded Uncertainty. Originated from GUM, expanded uncertainty, U 

is calculated by factoring in a coverage factor, k into combined standard uncertainty 𝑢c(𝑦): 

𝑈 =  𝑘𝑢c(𝑦)     (11) 

where k is chosen from the effective degrees of freedom vi of all the uncertainty sources, considering a 

specified coverage probability, calculated through Student’s t-distribution. Most commonly, k = 2 is 

chosen to give a level of confidence of approximately 95% [15]. It is recommended that the expanded 

uncertainty (𝑈) be rounded normally to two significant figures [12]. 

The doubt of the measurement can be quantified when the true value is within the margin with U 

and the confidence level [15]. All measurement uncertainty components regardless of classification 

are modeled by probability distributions quantified by variances or standard deviations [12]. 

Therefore, the process standard deviation contributed by measurement error can be estimated using 

equation (12), which is termed standard deviation of the measurement uncertainty and denoted by ̂u.  

̂u =  
𝑈

𝑘
            (12) 

3.3.   Standardized measurement target and measurement uncertainty 

The measurement uncertainty is dependent on the accuracy of the equipment used in the individual 

test station. An equation is formed by extending the equation (3) with mth test station instead of jth 

part family member. 𝑍𝑖𝑚 for modified Z chart takes measurement uncertainty into account, as depicted 

in equation (13): 

𝑍𝑖𝑚 =   
√ 𝑛 (𝑥̄𝑖𝑚 −𝑇𝑚)

̂p𝑚

     (13) 

where Tm is an expected value of the measurement target and ̂p𝑚
 is an estimate of the process 

standard deviation for each test station. Range for modified W chart are extended from equation (5) as 

follows: 

𝑊𝑖𝑚 =   
𝑅𝑖𝑚 

̂p𝑚

               (14) 

The ̂p𝑚
  provides the tolerance for the control limits. The model iteratively expands the tolerance 

limit from the lowest to highest value of ̂𝑝𝑚
. For the lowest values, min ̂p𝑚

=  ̂x𝑚
, where ̂x𝑚

 is 

an estimate of the population standard deviation that can be calculated by:  

 ̂x𝑚
=   

𝑅𝑚

𝑑2
                          (15) 

where 𝑅𝑚 is the average range for the mth test station. For the highest values, ̂u from equation (12) is 

taken into account. Pythagoras's theorem is used to estimate the maximum value of the ̂p𝑚
, as given 

below: 

max ̂p𝑚
=  √̂x𝑚

2 + ̂u𝑚

2
                   (16) 

The central line and control limits of modified charts are fixed with constant values as applied in 

the Z chart and W chart.  The charts are interpreted using Nelson’s rules as defined in table 1. Rules 1, 
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2, 5, and 6 are to be applied to upper and lower halves of the chart separately. Rules 3, 4, 7, and 8 are 

to be applied to whole chart [16]. With this, all rules apply to x̄ chart and Z chart. However, only rule  

1, 2, 5 and 6 can be applied to dispersion chart (R chart and W chart) without modification when the 

subgroup size is 5 or more which will lead to the symmetric control limits [17].  

 

Table 1. Nelson Rules 

Rule Description 

Rule 1 One point is more than 3 standard deviations () from the mean. 

Rule 2 Nine points in a row are on the same side of the mean. 

Rule 3 Six points in a row are continually increasing (or decreasing). 

Rule 4 Fourteen points in a row alternate in direction, increasing then decreasing. 

Rule 5 Two out of three points in a row are more than 2 from the mean in the same direction. 

Rule 6 Four out of five points in a row are more than 1 from the mean in the same direction. 

Rule 7 Fifteen points in a row are all within 1 of the mean on either side of the mean. 

Rule 8 
Eight points in a row exist with none within 1 of the mean and the points are in both 

directions from the mean. 

 

3.4.  Determining ̂𝑝𝑚
 through S-factor  

S-factor is an approach to estimate ̂p𝑚
 is through the expanded uncertainty (𝑈𝑚) and S-factor (𝑆f𝑚

), 

with the formula set as below: 

̂p𝑚
 =  

𝑈𝑚

𝑆f𝑚

                  (17) 

S-factor is then delineated as the ratio between the highest value of ̂p𝑚
 and the lowest value of ̂p𝑚

, 

is given by: 

𝑆f𝑚
=  

max ̂p𝑚

min ̂p𝑚

               (18) 

and the ̂p𝑚
 is set equal to min ̂p𝑚

 when the estimated value of the ̂p𝑚
 is equal or less than ̂x𝑚

, 

where: 

min 𝑆f𝑚
 =  

𝑈𝑚

̂x𝑚

                (19) 

As shown in figure 1, S-factor is useful to rescales the process standard deviation, and it is 

dependent on the ratio between the measurement uncertainty and the population standard deviation, 

which is termed as U/kx. For example, the ̂p𝑚
 estimated by S-factor is equal to max ̂p𝑚

 when 

U/kx ratio is equal to 1, and it is equal to min ̂p𝑚
 when U/kx ratio is equal or less than 0.577. 

Finally, the 𝑍𝑖𝑚 values for Z chart are given by: 

𝑍𝑖𝑚 =   
√𝑛 𝑆f𝑚(x𝑖𝑚 −𝑇𝑚)

𝑈𝑚
      (20) 

and range values for W chart are transformed using the following formula: 

W𝑖𝑚 =   
𝑆f𝑚  𝑅𝑖𝑚 

𝑈𝑚
    (21) 

 

3.5.  Model implementation 

In implementation, the model was embedded in an automated SPC system. The SPC application is 

developed using Visual Studio to gather data from test record database and to perform data analysis 

using analysis tool developed by Scrucca [18]. The tool uses R package (open-source programming 
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language) for quality control charting and violating rules checking. Automated SPC includes four 

steps: extracting data, creating analysis files, configuring setting and executing the SPC application. 

Variables used in the model (e.g., Tm, 𝑈𝑚, 𝑆f𝑚
) are defined and to be configured at setting stage. Two 

set of charts are plots, as below： 

1. Classical Shewhart control charts (x̄ chart and R chart)  

2. Z chart and W chart with ̂p𝑚
  determined through S-factor 

Eight tests based on Nelson’s rules interpret the charts. False alarm rate is used to compare the 

performance of the proposed models with classical Shewhart control charts. A false alarm will be 

counted if the rule test detected when the process behaves as per this normal or in-control behavior.  
 

 

Figure 1. Estimated process standard deviation with S-factor 

 

4.  Verification through case study in real industry  

A complete year’s data samples were collected from a product tested at multi-stations in a T&M 

manufacturing facility at Bayan Lepas, Penang. The DC vertical gain accuracy (VGA) for oscilloscope 

test is selected where it consists of 700 measurement results tested at three stations (WH05, WH06, 

and WH07). Two sets of charts are constructed with usually recommended subgroup size of 5 [19]. 

First six months’ data are used in phase I to construct trail control limits. To produce good results in 

practice, three sigma control limits were used so that the probability of type I error is kept at 0.0027 

[1]. These control limits are used in Phase II to monitor process outcomes with second half six 

months’ data. The implementation and analysis for all test stations are performed using same 

procedure. In this section, station WH05 is used to demonstrate the implementation with the proposed 

model.  
 

4.1.  Classical Shewhart control charts (x̄ chart and R chart)  

In figure 2, 5 points and 1 point violate the rules in x̄ chart and R chart respectively. However, in 

actuality, the process is said in compliance to industry standard as all reading and its tolerance 

coincidentally falls within the acceptance limits with measurement uncertainty guard band as shown in 

figure 3. With this, the violated points are considered false alarm, except for the points circled in red 

are considered true signal where there is large shift (rule 1) and small sustained shift (rule 6) on July 

2015. To solve the false alarm problem, operator may compensate the error through process 

adjustment or the control engineer will perform the retrospective analysis to construct a new control 

limits. 
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Figure 2. Shewhart x̄ chart and R chart for DC VGA test in station WH05 

 

 
Figure 3. Scatter Plot for DC VGA test in station WH05 

4.2.   𝑍 chart and W chart with ̂𝑝𝑚
 determined through through S-factor 

First, measurement target (T) needs to be determined. DC VGA test is measured by comparing the 

voltage reading between oscilloscope (Scope) and digital multimeter (DMM). Tm value is calculated 

from repeated measurement for each station and recompiled in the event of DMM readjustment during 

the calibration or DMM replacement with another unit. Five input quantities (Xi) affecting the 

measurement result (Y) are identified, as shown in table 2. They undergo either Type A or Type B 

evaluation to obtain the standard uncertainties 𝑢(𝑥𝑖). X1 is obtained from 15 repeated observations, the 

input estimates x1 is evaluated using Type A. Other input quantities (X2 to X5) are the equipment 

specification and the resolution of the reported measured value, the input estimates x2 to x5 are 

evaluated using Type B with rectangular distribution.  

The combined standard uncertainty 𝑢c(𝑦) is computed from individual 𝑢(𝑥𝑖) using equation (10): 

𝑢c(𝑦) =  [[𝑐1𝑢(𝑥1)]2 + [𝑐2𝑢(𝑥2)]2 + [𝑐3𝑢(𝑥3)]2 + [𝑐4𝑢(𝑥4)]2 + [𝑐5𝑢(𝑥5)]2]
1
2 

𝑢c(𝑦) = 0.638 mV 
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The expanded uncertainty (𝑈𝑚) is calculated with the coverage factor km = 2 and rounded to two 

significant figures. 

𝑈𝑚 =  2𝑢c(𝑦) = 1.3 mV 

 

Table 2. Evaluation of standard uncertainties 

Xi  Contributors Type vi ± Limits Units Distribution Ci 𝒖(𝒙𝒊) 

X1  Repeatability tests A 14 3.21E-04 mV Sigma 1 3.21E-04 

X2  Voltage accuracy from 

DMM 

B  3.15E-05 mV Rectangular 1 1.82E-05 

X3  Resolution error of DMM B  5.00E-03 mV Rectangular 1 2.89E-03 

X4  Vertical resolution error of 

Scope with input signal 

B  7.81E-01 mV Rectangular 1 4.51E-01 

X5  Vertical resolution error of 

Scope without input signal 

B  7.81E-01 mV Rectangular 1 4.51E-01 

 

With the estimated values of ̂x𝑚
 and ̂u𝑚

, the max ̂p𝑚
 is computed using Pythagoras's theorem 

in equation (16). S-factor (𝑆f𝑚
) is calculated with a ratio between max ̂p𝑚

 and min ̂p𝑚
, as shown in 

table 3.  

Table 3. Estimation of ̂p𝑚
 with S–factor 

Station 𝑼𝒎  ̂𝐱𝒎
 ̂𝐱𝒖

 Min ̂𝐩𝒎
  Max ̂𝐩𝒎

  𝑺𝐟𝒎
 

WH05 1.30E-03 5.63E-04 6.50E-04 5.63E-04 8.60E-04 1.527 

WH06 1.30E-03 5.61E-04 6.50E-04 5.61E-04 8.58E-04 1.531 

WH07 1.30E-03 6.06E-04 6.50E-04 6.06E-04 8.89E-04 1.466 
 

The transformation expression in equation (20) and equation (21) are applied to plot Z chart and W 

chart respectively as shown in figure 4. The results showed that there were no false alarm points found 

and capable to detect the large shift from mean.  As of now, the implementation is completed for 

station WH05; similar process will be repeated for other stations WH06 and WH07.  
 

   
Figure 4. Modified Z chart and W chart for DC VGA test in station WH05 with S-factor 

5.  Result and Discussion 

The summarized results of the case study are recorded in table 4. At this case, the U/kx ratio is at 1.1, 

the measurement error marginally affects the process standard deviation. From the analysis results 

from Shewhart x̄ chart, all test stations had many points exceeding the control limits and some 

abnormal patterns are falsely detected. These false alarms caused many unnecessary process 



9

1234567890‘’“”

ICMMPE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 328 (2018) 012009 doi:10.1088/1757-899X/328/1/012009

 

 

 

 

 

 

adjustment and loss of confidence in SPC. With the S-factor approach, the analysis results showed that 

the model performed very well in both Z chart and W chart with zero false alarms in all stations. The 

model reduced false alarms rate by up to 13% in comparison to the classical Shewhart x̄ chart. Based 

on the results of observations, all test stations are in normal and controlled behavior, except for station 

WH05 where the shift occurs in the process. In this case study, all methods were able to detect these 

assignable causes. Results of the case study proved that the model with S-factor is efficient and 

effective for T&M process.  

 

Table 4. Summary result of the case study 

 
 

6.  Conclusions 

This paper proposed a modified SPC model combining modified guard band and control charts (Z 

chart and W chart) to address issues caused by short production runs and measurement errors. The 

model utilized the measurement target and measurement uncertainty to standardize the observed value. 

S-factor determines the estimation of the process standard deviation for control limits tolerance. The 

effectiveness of proposed model was demonstrated by a case study in real industry and it shows that 

the measurement error marginally affected the process standard deviation. The results revealed that the 

model significantly reduced false alarm rate compared to the one using classical Shewhart control 

charts. Moreover, the results proved that the model using the S-factor can rescale the process standard 

deviation in an efficient and effective manner. The proposed model using the modified control charts 

is practical for T&M manufacturing to eliminate false alarm, without sacrificing sensitivity to level 

shifts.  
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