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Abstract. Additive manufacturing (AM), also known as 3D Printing, is a revolutionary 

manufacturing technique which has been developing rapidly in the last 30 years. The evolution 

of this precision manufacturing process from rapid prototyping to ready-to-use parts has 

significantly alleviated manufacturing constraints and design freedom has been outstandingly 

widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model 

data to build parts by adding one material layer at a time, rather than removing it and fulfills the 

demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, 

and easy to assemble parts. Additive manufacturing of metals has become the area of extensive 

research, progressing towards the production of final products and replacing conventional 

manufacturing methods. This paper provides an insight to the available metal additive 

manufacturing technologies that can be used to produce end user products without using 

conventional manufacturing methods. The paper also includes the comparison of mechanical and 

physical properties of parts produced by AM with the parts manufactured using conventional 

processes. 

1.  Introduction 

Additive manufacturing has been around for decades and it is continuously evolving at an immense rate. 

This advancement in additive manufacturing techniques has attracted interest from both the academic 

community and the business world. AM is an umbrella which accommodates wide range of technologies 

and is known by many nick names such as Freeform Fabrication, Solid Freedom Fabrication, layer-

Based Manufacturing, Rapid Prototyping, Additive Layered Manufacturing, Rapid Manufacturing, 

Additive Fabrication etc. [1-3]. The official definition of Additive Manufacturing (AM) is given by 

American Society for Testing and Materials (ASTM) F2792 as “process of joining materials to make 

objects from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive 

manufacturing methodologies” [4]. This approach of AM to create products with increased efficiency, 

accuracy and reduced wastage makes it a more sustainable manufacturing process. Additive 

manufacturing stands out the most among other emerging manufacturing techniques and has the 

potential to replace conventional manufacturing process, allow for new products and change society as 

whole. However, this process is still in its early existence, but it has been showing signs of great future 

potential and has been enthusiastically embraced by a small number of early global adopters [5-7]. 
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2.  Metal Additive Manufacturing 

Metal additive manufacturing consists of many different technologies, These technologies can be divided 

into two categories; the “direct” way is where the metal powder completely melts and solidifies to form 

the final part. In “indirect” way, a binder is used to join the particles of metal powder together and post 

processing is necessary to achieve desired density. Classification of AM processes for metals is shown 

in Figure 1. “Direct” methods for manufacturing metal parts using additive manufacturing including 

Selective Laser Melting (SLM), Laser Metal Deposition (LMD) and Electron Beam Melting (EBM). In 

all these technologies, metal powder fully melts and then solidifies to form the end product. All these 

technologies can produce denser parts compared to other AM technologies. 

 

 
Figure 1. Classification of metal AM processes [8] 

 

2.1.  Selective Laser Melting (SLM) 

Selective Laser Melting is one of the industry’s leading additive manufacturing technologies. It is 

precise and fast compared to other AM technologies. SLM is similar to SLS, but it goes a step further 

and rather than just sintering the powder particles to form the 3D part, SLM fully melts the powder 

particles to form the final part. SLM technology makes it possible to achieve approximately 100% 

density and a much stronger part, eliminating the need for postprocessing steps like infiltration, which 

are highly required in SLS or DMLS. SLM provides unlimited freedom of design and can produce highly 

complex shapes which can be impossible to manufacture using conventional manufacturing processes. 

[9] in his experimental study fabricated an impression block with conformal cooling channels for die 

casting using SLM. When compared to conventionally produced block, it was discovered that due to the 

conformal channels, the cooling rate increased and resulted in reduced need for spray cooling. It was 

also observed that the surface finish of casted parts improved and the cycle time was reduced [9]. As 

other AM processes, SLM process starts with a computerized 3D model which after sliced into layers, 

the information is fed to the SLM machine. A thin metal powder layer is spread across the metal build 

plate. Then the laser selectively scans the cross section on the material in x-y axes per the 3D data 

provided earlier. As the laser scans each layer, the powder particles are melted and consolidated into a 

homogenous part. Material which is not part of the model geometry is left unaffected and acts as a 

support structure. The build platform then lowers by a single layer thickness and the levelling blade 

sweeps across the build platform and covers it with another layer of powdered metal. The laser then 

scans the next layer and the process repeats building layer by layer until the part is completed [10-12]. 

The process is illustrated in Figure 2. 
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Figure 2. Selective Laser Melting (SLM) mechanism (Source: empa.ch) 

 

2.2.  Electron Beam Melting (EBM) 

Electron Beam melting is another additive manufacturing technology which forms 3D parts by full 

melting of powder particles. The key difference between laser based additive manufacturing 

technologies and EBM is the heat source. EBM, as the name suggests uses an electron beam instead of 

laser, which requires that the procedure is carried out under vacuum conditions to prevent dissipation of 

the electron beam. After being heated at a high temperature, the electrons are emitted from a filament. 

The beam of electrons is accelerated up to half the speed of light, controlled by two magnetic fields. 

One field acts as a magnetic lens and helps the beam to focus to desired diameter, whereas the second 

field deflects the focused beam to the build platform at a desired point. In EBM printer, as shown in 

Figure 3, the machine spreads a layer of powder material on the build platform. The electron beam melts 

the material powder per the data provided to it. The build platform is lowered and next layer of powder 

is spread.  The beam traces the cross section of the next layer and melts the powder. The process repeats 

until the 3D part is built [13-14]. 

 

 
Figure 3. Electron Beam Melting (EBM) mechanism (Source: arcam.com) 
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2.3.  Laser Metal Deposition (LMD) 

Laser metal deposition, also called as direct energy deposition and laser cladding, is a powder based 

additive manufacturing process, which is used to build 3D parts, repair metal components deemed 

nonrepairable by conventional methods or add features to existing parts. The process is very simple and 

it begins with a 3D model like other AM technologies. The model is divided into layers and the 

information is fed to the LMD machine. Molten pool is created by the laser beam on metallic substrate, 

then metal in powder form is applied through the nozzle into the melt pool by a meticulousness powder 

fed system as shown in Figure 4 below. The deposited powder then melts and is metallurgically bonded 

to the base material creating a weld bead. The process repeats building up layer by layer until the part is 

complete [15]. 

 

 
Figure 4. Laser Metal Deposition (LMD) mechanism (Source: industrial-lasers.com) 

 

3.  Physical Properties 

When printing a metal part, the surface finish, mechanical properties and geometrical accuracies are the 

main concerns The size of the feedstock and the diameter of the heat source determine the minimum 

feature size. Smaller feature sizes lead to a smaller layer thickness which, as a result, give better 

resolution but at the cost of build rate/deposition rate. SLM has the minimum beam diameter and the 

smallest layer thickness compared to EBM and LMD. Thus, SLM has a higher resolution among the 

three. SLM has a minimum beam diameter of 50 µm compared to EBM’s 140 minimum beam diameter. 

Compared to LMD’s minimum layer thickness of 100 µm, SLM has a minimum layer thickness of 20 

µm. Minimum feature size is also advantageous for SLM and EBM for printing metal mesh structures. 

SLM and EBM can also be utilized to build complex geometries with overhangs whereas with LMD, 

support structure may be required (5 axes can be utilized to eliminate support structures) [16]. Two 

factors contribute to surface roughness of metal; Layer roughness and actual roughness [17], as shown 

in Figure 5.. 
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Figure 5. Factors for surface roughness in AM (a) Layer roughness (b) Actual roughness [17] 

 

Layer roughness effect can be reduced by decreasing layer thickness, but doing so would result in longer 

build time, whereas actual roughness of metal surface depends on the machine used, build direction and 

process parameters. As 3D parts in AM are built layer by layer, reducing the layer thickness would result 

in higher number of layers. Thus, EBM and LMD with a larger layer thickness have a higher build rate 

compared to SLM. This higher build rate comes at the expense of geometrical accuracy. Larger layer 

thickness comes in the way of achieving near net shape part and machining is required to accomplish 

final geometry and details. 

4.  Mechanical Properties 

The yield strength, ultimate Tensile Strength, % elongation and hardness from published data have been 

summarized in Table 1. The data from EBM, SLM and LMD is compared with the values obtained from 

conventionally cast and wrought test specimens. EBM processed specimens show superior mechanical 

properties compared to cast specimens, but are almost equivalent when compared to wrought specimens. 

SLM on the other hand has superior UTS and Ys compared to EBM, wrought and cast parts. However, 

it should be noted that the ductility is lower compared to them. LMD like SLM has higher UTS and Ys 

compared to the EBM, wrought and cast samples but a lower ductility. When comparing SLM and LMD, 

SLM shows either superior or equivalent mechanical properties. [18] in his study demonstrated that 

SLM specimen of Ti6Al4V ELI exhibited a superior fatigue limit (550 MPa), whereas EBM samples of 

Ti6Al4V ELI showed an inferior fatigue limit (340 MPa). 
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Table 1. Comparison of Mechanical Properties of Different AM Technologies 

 

5.  Conclusion 

As the interest of different industries is growing in AM, more and more AM equipments are available 

in the market. Different AM technologies serve different purposes from rapid prototyping of novel 

products to rapid manufacturing of end products. Many different AM technologies are available with 

numerous different parameters which affect the final product.[30] estimated that there are approximately 

130 parameters that can impact the SLM process, of which, 13 are critical to the quality characteristics 

of the final manufactured parts. In SLM, EBM and LMD many different process parameters affect the 

final product and the mechanical properties of these processes are either equivalent or higher compared 

to conventional manufacturing techniques (wrought, cast, etc.). Regardless of the processes, what 

matters more is the suitability of a final product for a specific application. For instance, SLM can be 

chosen for an application requiring superior part strength, whereas EBM can be selected if the 

application requirement is a moderate strength ductile part. Therefore, selection of a specific process, 

may it be LMD, EBM or SLM, largely depends on the requirements for end-use. Thus, proper 

understanding of the final product application is necessary for choosing the right AM process. 

 

Process Material 

Yield 

Strength 

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Elongation 

(%) 

Hardness 

(HV) 
Reference 

Wrought 
Ti6Al4V ELI 860 931 14 327 [19] 

Ti6Al4V 860 930 10 - [20] 

Cast 
Ti6Al4V ELI 734 851 4.4 333 [19] 

Ti6Al4V 758 860 8 - [20] 

EBM 

 

Ti6Al4V ELI 
930 970 16 318 [21] 

869 928 9.9 327 [18] 

Ti6Al4V 
950 1020 14 327 [20] 

883.7 - 938.5 993.9 – 1029.1 13.6 – 13.2 - [22] 

SLM 

Ti6Al4V ELI 
1143 1219 4.89 403 [18] 

996 ± 10 1110 ± 13 7 ± 4 399 ± 4 [23] 

Ti6Al4V 
990 ±5 1,095 ± 10 8.1 ± 0.3 - [24] 

1116 ± 61 1286 ± 57 8 ± 2 384 ± 5 [25] 

LMD Ti6Al4V 

1062 1157 6.2 - [26] 

976 ± 24 1099 ± 2 4·9 ± 0·1 360 ± 10 [27] 

1025 - 1085 1138 - 1168 3.4 – 3.7 390 ± 2 [28] 

973 1077 11 - [29] 
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