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Abstract. The optimisation process of a vibration energy harvester is usually restricted to 

experimental approaches due to the lack of an analytical equation to describe the damping of a 

system. This study derives an analytical equation, which describes the first mode damping ratio 

of a clamp-free cantilever beam under harmonic base excitation by combining the transverse 

equation of motion of the beam with the damping-stress equation. This equation, as opposed to 

other common damping determination methods, is independent of experimental inputs or finite 
element simulations and can be solved using a simple iterative convergence method. The derived 

equation was determined to be correct for cases when the maximum bending stress in the beam 

is below the fatigue limit stress of the beam. However, an increasing trend in the error between 

the experiment and the analytical results were observed at high stress levels. Hence, the fatigue 

limit stress was used as a parameter to define the validity of the analytical equation. 

1.  Introduction 

The need for a sustainable energy source to power small electronics has caused an increase in research 

on energy harvesting. The idea of harnessing energy from ambient vibrations to power wireless sensors 

have been discussed in several literatures over the past decade [1–3]. The mechanism of a typical 
vibration energy harvester usually involves a cantilever beam with one end clamped to a vibrating 

structure; hence, subjecting the beam to base-excitation type motion. There are several approaches to 

convert the mechanical energy from the vibrating beam into electrical power, such as using piezoelectric 
transducers or through electromagnetic induction [4]. 

Optimisation of vibration energy harvesters have been the interest of most recent literatures [5–8]. 

The optimisation process generally involves design modifications in an attempt to produce more power 

or increase the frequency bandwidth of the device, while maintaining minimum size. Nevertheless, 
nearly all of the optimisation work involves experimental works or complex finite element algorithms 
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due to the lack of analytical equations to fully describe the vibration system, particularly the damping 

parameter. 

Often, the equations developed for a vibration system requires the damping parameter as an input. 

Previous work demonstrated a mathematical model equation describing the motion of a clamp-free 
cantilever beam under harmonic base excitation [9]. While this equation was proven to match closely 

with the experimental results, the equation was not fully analytical in terms that the damping parameter 

is expected to be obtained either from experiment or literature. Since damping varies according to the 
material and the dimensions of a cantilever beam, experimental input is preferred for better accuracy. 

This tells us that the mathematical model itself is not able to predict how the cantilever beam would 

behave prior to the experiment if an accurate damping ratio of the cantilever beam is unknown. Hence, 

the development of an analytical equation to accurately describe damping is highly necessary as this 
would allow for better hands-off predictions on the behaviour of the vibrating object and open up new 

paths to optimisation [10]. In an earlier work, an attempt was made to predict the damping of a material 

based on the stress distribution function of a cantilever beam during vibration [11]. Based on the study, 
an ideal damping equation was proposed, which relates the maximum bending stress and fatigue limit 

stress of a structure to its loss factor. However, this equation assumes the maximum bending stress as 

an experimental input. 

In this work, an analytical equation describing the first mode damping ratio of a cantilever beam was 

derived by combining the equation of motion for the transverse vibration of a cantilever beam with a 

refined damping-stress equation [9,12]. The analytical equation can be used to predict the damping ratio 

of any clamp-free cantilever beam under harmonic base-excitation, provided that the beam’s material 
properties and dimensions are known. After comparing the analytical results with the experimental 

findings, the importance of the fatigue limit stress on the quality of the analytical results was discussed 

and the validity of the equation was summarised. 

2.  Derivation of analytical equation 

Clamp

y(t)
z(x,t)

x = 0 x = L
x

Clamp-free Cantilever Beam

 
Figure 1. Cantilever beam under harmonic base excitation. 

Figure 1 illustrates the movement of a vibrating clamp-free cantilever beam under harmonic base 

excitation. In general, the transverse motion of the clamp-free beam in Figure 1 at position 𝑥 and time 𝑡 

can be described by equation (1). 

𝑎(𝑥, 𝑡) =  𝑧(𝑥, 𝑡) + 𝑦(𝑡) (1) 

where 𝑎(𝑥, 𝑡) is the total amplitude of the vibrating beam, 𝑧(𝑥, 𝑡) is the amplitude of the beam relative 

to its clamped base and 𝑦(𝑡) is the harmonic base excitation amplitude. Based on the Euler-Bernoulli 

beam theory, the equation of motion for an undamped cantilever beam subjected to external force can 
be modelled using equation (2). 

𝐸𝐼
𝑑4𝑧(𝑥, 𝑡)

𝑑𝑥4
+ 𝜌𝐴

𝑑2𝑧(𝑥, 𝑡)

𝑑𝑡2
= 𝐹(𝑡) (2) 
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where 𝐸 is the Young’s modulus of the cantilever beam, 𝐼 is the second moment of area, 𝜌 is the density, 

𝐴 is the beam’s cross-sectional area and 𝐹(𝑡) is the forcing function distributed over the length of the 

beam. For cases of base excitation problem, the forcing function 𝐹(𝑡) signifies the driving force input 

of the base motion. Using the method of separation of variables, the term 𝑧(𝑥, 𝑡) can be separated into 
its spatial and temporal components. 

𝑧(𝑥, 𝑡) = ∑ 𝜑𝑛(𝑥)𝜂𝑛(𝑡)

∞

𝑛=1

 (3) 

where 𝜑𝑛(𝑥) is the cantilever beam’s modal-shape eigenfunction and 𝜂𝑛(𝑡) is the regular-response 

function. The subscript 𝑛 in equation 3 denotes the correspondence to the 𝑛𝑡ℎ mode of vibration. The 

cantilever beam’s eigenfunction can be described as [9,13] 

𝜑𝑛(𝑥) = (
1

𝑚
)
1/2

[𝑐𝑜𝑠ℎ
𝛽𝑛

𝐿
𝑥 − 𝑐𝑜𝑠

𝛽𝑛

𝐿
𝑥 −

𝑠𝑖𝑛ℎ𝛽𝑛 − 𝑠𝑖𝑛𝛽𝑛

𝑐𝑜𝑠ℎ𝛽𝑛 + 𝑐𝑜𝑠𝛽𝑛
(𝑠𝑖𝑛ℎ

𝛽𝑛

𝐿
𝑥 − 𝑠𝑖𝑛

𝛽𝑛

𝐿
𝑥)] (4) 

where  𝑚 is the mass of the unclamped part of the beam, 𝐿 is the length of the beam and 𝛽𝑛 is a 

dimensionless constant. The regular response function is the solution to the following second-order 
differential equation. It is easy to notice that equation (5) can be solved by referring to a single degree 

of freedom vibration problem. 

𝜂𝑛̈(𝑡) + 2𝜁𝑛𝜔𝑛𝜂𝑛̇(𝑡) + 𝜔𝑛
2𝜂𝑛(𝑡) = 𝐹(𝑡) (5) 

where 𝜂𝑛̇ and 𝜂𝑛̈ is the first and second derivative of the response function with respect to 𝑡,  𝜁𝑛, which 

is the cantilever beam modal damping ratio and 𝜔𝑛  is the 𝑛𝑡ℎ mode natural frequency of the beam. The 

forcing function term can be expressed as [8]. 

𝐹(𝑡) =
−𝑚𝜔2𝑦𝑒𝑖𝜔𝑡

𝐿
∫ 𝜑𝑛(𝑥)𝑑𝑥

𝐿

0

 (6) 

where 𝜔 is the frequency of the harmonic driving force input. Solving equation (7) and substituting the 

solution into equation (6), the solution for equation (6) for cases of harmonic motion can be obtained. 

𝜂𝑛(𝑡) =
2𝜔2𝑚1/2(𝑠𝑖𝑛ℎ𝛽𝑛 − 𝑠𝑖𝑛𝛽𝑛)

𝛽𝑛(𝜔𝑛
2 − 𝜔2 + 𝑖2𝜁𝑛𝜔𝑛𝜔)(𝑐𝑜𝑠ℎ𝛽𝑛 + 𝑐𝑜𝑠𝛽𝑛)

𝑦𝑒𝑖𝜔𝑡  (7) 

Substituting Eqs. (7) and (4) into equation (3) and considering cases of first mode resonance where 

𝜔 = 𝜔𝑛  and 𝑛 = 1, the real part of equation (3) becomes 

𝑧(𝑥, 𝑡) = 𝑦𝑒𝑖𝜔1𝑡 [𝑐𝑜𝑠ℎ
𝛽1

𝐿
𝑥 − 𝑐𝑜𝑠

𝛽1

𝐿
𝑥

−
𝑠𝑖𝑛ℎ𝛽1 − 𝑠𝑖𝑛𝛽1

𝑐𝑜𝑠ℎ𝛽1 + 𝑐𝑜𝑠𝛽1
(𝑠𝑖𝑛ℎ

𝛽1

𝐿
𝑥 − 𝑠𝑖𝑛

𝛽1

𝐿
𝑥)]

𝑠𝑖𝑛ℎ𝛽1 − 𝑠𝑖𝑛𝛽1

𝛽1𝜁1(𝑐𝑜𝑠ℎ𝛽1 + 𝑐𝑜𝑠𝛽1)
 

(8) 

This accuracy of equation (8) has been validated by previous authors [9]. Applying the Euler-
Bernoulli theory and Hooke’s law, the stress acting on a cantilever beam can be described by the 

following equation 
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𝜎(𝑥, 𝑡) =
𝐸𝑏

2
(
𝑑2𝑧

𝑑𝑥2
) (9) 

where 𝜎(𝑥, 𝑡) is the stress acting on the beam, 𝑏 is the thickness of the beam and 
𝑑2𝑧

𝑑𝑥2 is the second 

derivative for the beam’s vertical motion equation with respect to 𝑥. Substituting equation (8) into 

equation (9) and evaluating the beam at 𝑥 = 0 and 𝑦𝑒𝑖𝜔1𝑡 = 𝑦, the expression for the maximum bending 

stress of a vibrating beam can be obtained. 

𝜎𝑚 =  𝐸𝑏𝑦𝛽1

𝑠𝑖𝑛ℎ𝛽1 − 𝑠𝑖𝑛𝛽1

𝐿2𝜁1(𝑐𝑜𝑠ℎ𝛽1 + 𝑐𝑜𝑠𝛽1)
 (10) 

where 𝜎𝑚 is the maximum bending stress experienced by the beam. Equation (10) relates the maximum 

bending stress on a beam to its damping ratio. Equation (11) describes another equation relating these 

two variables. The equation is described as refined damping-stress equation that relates the maximum 

stress and fatigue limit stress of a cantilever beam to its first mode loss factor [12]. 

𝜎𝑚 =  𝐸𝑏𝑦𝛽1𝛾1 = 𝐸 (2130.6
𝜎𝑚

0.3

𝜎𝑓
2.3

+ 8176.7
𝜎𝑚

6

𝜎𝑓
8
) (11) 

where 𝛾1 is the first mode loss factor and 𝜎𝑓 is the fatigue limit stress of the beam. In general, the loss 

factor of a cantilever beam is twice the value of its damping ratio. Taking this into account and 

substituting equation (10) into equation (11), the analytical equation for the first mode damping ratio 

can be derived in the form of 

𝜁1 =
𝐸

2

[
 
 
 

2130.6
( 

2𝐸𝑏𝑦𝛽1𝐾1

𝐿2𝜁1
)
0.3

𝜎𝑓
2.3

+ 8176.7
 (

2𝐸𝑏𝑦𝛽1𝐾1

𝐿2𝜁1
)
6

𝜎𝑓
8

]
 
 
 

 (12) 

where  

𝐾1 = 
𝑠𝑖𝑛ℎ𝛽1 − 𝑠𝑖𝑛𝛽1

𝑐𝑜𝑠ℎ𝛽1 + 𝑐𝑜𝑠𝛽1
 (13) 

The dimensions and material properties of a cantilever beam are usually known. Hence, the only 

unknown parameter in equation (12) is the damping ratio of the beam. Since this unknown parameter 

appears on both sides of the equation, equation (12) can be solved using an iterative converging 
algorithm, such as the secant method or the Newton-Raphson method. 

3.  Results and Discussion 

In this section, the analytical equation from equation (12) was compared to the experimental results. An 

aluminium and a steel cantilever beam were used in the experiments; their properties are tabulated in 
Table 1 below. 

Table 1. Specifications of the specimen cantilever beams. 

Material 𝐸 (GPa) 𝑡 (mm) 𝑤 (mm) 𝜎𝑓 (Mpa) 

Aluminium 60 1.20 18.14 95 

Steel 190 0.50 12.75 310 
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The experiment involved subjecting a cantilever beam to a harmonic base-excitation vibration by 

clamping one end of the beam onto an electromagnetic shaker. The output response of the beam and the 

shaker was recorded using laser displacement sensors and the damping ratio was determined based on 

these responses. Figure 2 shows the schematic of the experimental setup. 

Shaker Cantilever Beam

Laser Displacement 
Sensor 1

Laser Displacement 
Sensor 2

Amplifiers DAQ Computer

 
Figure 2. Schematic of the experimental setup used to determine the damping ratio of cantilever beams. 

For each beam, the experiment was repeated several times to induce different damping ratios by 

changing the length of the beam or the base excitation amplitude. The thickness and the width of the 

beam remained fixed. Usually, the preferred method to determine the damping ratio of a beam specimen 
under base excitation cases is to use the half-power bandwidth method. However, this method can lead 

to inconsistent results as the damping ratio obtained is highly dependent on the quality of the frequency 

response curve. Hence, for a more substantial result, the experimental damping ratio was calculated by 

using equation (8), where the maximum relative amplitude at 𝑥 = 𝐿 and the corresponding base 

excitation amplitude was obtained from the experiment. The maximum bending stress at the clamped 

end of the beam was calculated using equation (10) based on the determined damping ratio. Figure 3 

and Figure 4 illustrate the comparison between the analytical and the experimental results. 

 
Figure 3. Comparison between experimental and analytical results for aluminium cantilever beam. 
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Figure 4. Comparison between experimental and analytical results for steel cantilever beam. 

The results demonstrated that the experimental findings closely correlated to the analytical equation 
at low stress values, specifically below the fatigue limit stress of the beam. The maximum error recorded 

between the analytical and the experimental damping results at stresses below the fatigue limit stress for 

aluminium is approximately 21%, whereas for steel it is around 29%. The errors in both beams are seen 

to increase as the stresses exceed the fatigue limit stress, although steel recorded a more significant error 
with a maximum reaching 735%. It is easily noticed that although a large error was recorded for both 

beams at stresses above the fatigue stress limit, the damping ratio recorded at these stresses still 

displayed an increasing trend. This is in agreement to what was discussed in earlier studies in where the 
damping of a structure is highly dependent on the stress distribution of the structure [11]. The errors 

recorded in this work may be due to the fact that the damping-stress equation in equation (11) was a 

refinement of another damping-stress equation, which was described to be an idealised relation 

generalising high non-linear stress behaviour [11,12]. In reality, several other different types of 
damping-stress curve representations were also recorded in his work. Nevertheless, if the stress levels 

were constrained to values below the fatigue stress limit, the analytical equation can be concluded to 

provide a good estimation on the damping ratio of any cantilever beam. This, in turn, defines the validity 
of the analytical equation, where it is only valid within the mentioned constraints. 

In terms of vibration energy harvesting application, current research focuses on design 

miniaturization as these devices are generally targeted to be installed in small electronics. Hence, the 
vibrating beam is not expected to vibrate at high stresses due to the volume constraint and would almost 

definitely not reach the fatigue stress limit. Therefore, it is possible to optimise these small devices and 

expect a fairly good prediction using the analytical equation. In general, the analytical equation can 

provide a good insight to designers or material scientists on the damping capacity of different materials, 
where instead of spending a large sum of money on material testing, one can apply the equation to have 

a broad idea on the average damping capacity of a material. 

4.  Conclusion 
An analytical equation describing the first mode damping ratio of a clamp-free cantilever beam under 

base-excitation motion was proposed and the importance of the fatigue limit stress on the proposed 
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equation was discussed. The analytical equation displayed a good agreement with experimental results 

when the cantilever beam experienced low stress levels. However, large errors were recorded when the 

maximum stress exceeded the fatigue limit stress of the beam, with the errors increasing further as the 

maximum stress in the beam increased. This limitation describes the validity of the analytical equation, 
where it was concluded that the equation would only be valid for cases where the maximum bending 

stress is below the fatigue limit stress. The work presented here does not account for cases where a 

lumped mass is placed at the free end tip of the cantilever beam. Hence, future plans include deriving 
the damping ratio equation for cases of cantilever beams with lumped mass and investigating the 

accuracy of this equation. 
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