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Abstract. Efficiency of diesel has been studied using Wwathwn types of the ceramic heat-
insulating HICs- or thermal barrier TBCs-coatinghis problem is relevant for a high-speed
diesel combustion chamber in which an intensivéargdcomponent (near IR) reaches ~50%
within total thermal flux. Therefore, in their warkhe authors had been offering new concept
of study these materials as semitransparent SHEEEBCs-coatings. On the Mie scattering
theory, the effect of selection of the specifizistural composition and porosity of coatings on
the variation of their optical parameters is coastdl. Conducted spectrophotometric modeling
of the volume-absorbed radiant energy by the cgatiad determined their acceptable
temperature field. For rig testings, a coated pistsing selected SHIC(PSZ-ceramic
ZrO,+8%Y,05) with a calculated optimum temperature gradiens alaosen. Asingle cylinder
experimental tractor diesel was used. At rotatieqgdiencyn > 2800 rpm, the heat losses were
no more than 0.2 MW/fmExecuted testings showed ~2-3% lower specifit daasumption in
contrast to the diesel with an uncoated pistonediiffe power and drive torque were ~2-5%
greater. The authors have substantiated the grthettefficiency of this Low-Heat-Rejection
(LHR) diesel due to the known effect of soot deposi gasification at high speed. Then
unpolluted semitransparent ceramic thermal insaafiorms the required thermoradiation
fields and temperature profiles and can affect letgnn of heat losses and a reduction of
primarily nitrogen dioxide generation.

1. Introduction

This paper examines an already recognized methadfiofency increasing for Low-Heat-Rejection
(LHR) diesel using well-known ceramic heat-insuigtiHICs- or thermal barrier TBCs-coatings
which have been applied from the 70s of the lasturg in Russia [1-10] and abroad [13- 32]. But
when suggesting that, the reducing toxicity of exdtagases can be achieved using these ceramic
coatings as a semitransparent one, taking intousttbeir specific optical properties and formatain
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a predetermined absorption regime of penetratirgntbradiation for control and management
temperature of the exposed surface [7-10].

This problem is relevant for a diesel engine wittbanbustion chamber (CC), in which there is an
intensive radiant (near-IR) component up to ~50%hiwitotal thermal flux [33-36]. Then these so
called semitransparent coatings (SHICs or STBCs) easure the required heat rejection and
controlled generation rate of exhaust gases (piliynaitrogen dioxide), caused by formation of
specific temperature fields in their subsurfaceezon

Extensive research of a quasi-adiabatic engine wusihg of heat-insulating coatings has been
suspended since the end of the 20th century [#3,7). In the authors’ opinion, it was connected
with an unresolved problem of effect of the radip@betrating component (generated by red-hot soot
particles) of total thermal flux falling on the lt@asulating coating, which can be semitranspafeeg
Fig. 1). Most well-known ceramic coatings basedmites (AbOs, SiO,, Zr,03) are semitransparent
[7-10, 17, 36-38].
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Figure 1. Block diagram of convective and radidigat transfer inside diesel combustion chal
with opportunity of physical modeling using radiatiand-convective cycling simulator [11, 12].

Earlier used traditional heat-insulating coatingsravconsidered as opaque for IR radiation. This
was true only for some coatings, for example, bamedSgN,, SIC [4, 20-22]. Otherwise above-
mentioned assertion will kerroneous and there is an incorrect analysis ofptexrheat transfer in the
coated combustion chamber (CC).

Even the latest developments of thermal protedibtorLHR diesel engines still do not take into
account the presence of the radiant componentengid combustion chamber and the optical
properties of its ceramic coatings [4-6, 18-32]

But semitransparent coatings could be also coraides opaque because of the imperfection of the
plasma-spraying technology, which causes the appearof highly absorbent metallic particles of the
plasmatron electrodes inside the coating.

All the opaque materials cause an increase of teatyme on their irradiated surface due to high
surface absorption of radiation within near IR.sTeffect had resulted to impermissible overheating
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the inner surface of the heat insulated CC’ watld mtensive generation of the most toxic nitrogen
oxides.

The temperature increase of the walls was noticedirdicated by the first publications [15-17],
classical monographs [3, 18] and many subsequerdgriuesearches. But the main reason of surface
overheating was not noticed - the possible surédosorption of thermoradiation by highly absorbing
coatings of CC walls.

Nowadays numerous publications and special thematiews indicate the trend of extraordinary
growing interest in application and study of cemMBCs (HICs) during the last 10 years [4-6, 13,
19-32]. This was due to progress and improving ditiom technologies with a predetermined porosity
and structural composition.

The authors of one of the reviews confirm the sthmtensive development of TBCs by the global
automotive industry [25]: “Research for decreasingts and consumed fuel in internal combustion
engines and technological innovation studies haenlcontinuing. Engine efficiency improvement
efforts via constructional modifications are in@ed today; for instance, parallel to development of
advanced technology ceramics, ceramic coating @gmns in internal combustion engines grow
rapidly”.

As a rule, researchers only are citing [29, 30]pghblications of the authors of this work. The fact
of the need to analyse “semitransparent charatitsrief ceramics” is indicated, but their own
methodology of radiant-conductive heat transferr@seen corrected.

The studies of ceramic coatings for internal cortibnsengines in automotive industry are actually
the result of implementation of earlier researcblegracteristics of radiant and convective ablative
thermal protection for aerospace aircrafts started®60-70s [39-43].

Numerous R&D of TBCs were carried out using a détadsapparatus of radiative transfer in
semitransparent materials. But until now these ldgweents have not been applied for investigation
of non-destructible protective heat-insulating owgg in the auto industry [3-6, 13-32]. In aerospac
industry, applying semitransparent ceramic for ingbelements was a logical continuation of
investigation materials with a predetermined desion threshold under continuous exposure of
penetrating thermoradiation [44-47].

The term “Thermal Barrier Coating” came to the aubtive industry from the aerospace
terminology. Such heat-insulating materials aredugecreate a combustion chamber for adiabatic
engines or their elements. At the same time, tisé dievelopers pointed out the need to study tlee ro
of radiation components in the combine exchangeénSC [1, 15-18]. Thus, in spite of the legendary
developments of ceramic ICE in previous decadesyynmaodern automotive engineers have not yet
involved analysis of thermoradiation processeséirtcurrent researches [1, 3-6, 13, 18-32].

2. Physical and mathematical simulation of radiant ancheat conductivity transfer

The engine researches show that if the temperafucembustion chamber’ inner walls becomes 2
times higher, the value of the heat transfer coieffit increases 5 times. Then the heat exchaniein
boundary layer of the combustion chamieC) wall begins to intensify [1-3, 18]. This is besauhe
flame (combustion source) at high surface tempegatis moving closer to the wall, causing a rise of
the temperature gradient since the distance frensdhirce to the wall is decreasing.

In this connection, the studying of heat exchan@esamitransparent heat-insulating coatings
(SHICs) focuses on research of the influence ofhiesmal regime on the temperature of the inner
surface of combustion chamber walls and the haaster through these coatings. The methodology
of analysis of radiant heat exchange and theotetizalutions of temperature profiles based on
calculated thermoradiation fields inside coatingeltaare presented in the authors’ works [7-10]. In
this paper, new boundary conditions and thermatacheristics, obtained during conducted rig tests,
were used for theoretical calculations of tempeeafields in semitransparent coatings.

A one-dimensional optical two-layer model of semmigparent coating of the SHIC protecting
metal substrate with surface reflection was used Eg. 1).
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The diagram also presents the experimental radraind-convective cycling simulator allowing
one to imitate a complex heat transfer inside thmhustion chamber at an radiant flux of up to ~5
MW/m? (with several simulators) within a wavelength rangf 0.3-2 pm in one-dimensional
approximation for significant areas of internal @@lls (up to hundreds of square centimeters) [11,
12]. In these works, authors have solved the maiblpm of creation of laboratory set up with a
broadband radiation source. This simulator's comgporincludes high-intensity discharge xenon
lamps, which is capable to generate the modellgalien radiation spectrum which is close to the
continuous spectrum of radiation of red-hot sootiglas in the typical combustion chamber (CC).

Partially yttria stabilized zirconia (PSZ) is tharently preferred coating for applications in CC
diesel and turbines [4, 6-10, 13, 19-32, 36, 37441 This coating has two import properties among
semitransparent ceramics with low thermal condigtithe most high thermal expansion coefficient
and a good erosion resistance.

Substances PSZ (Zy€8-8%Y,0s) were used to produce flat tablets of variouskiiéss intended
for optical measurements of reflection (transmitegncoefficients for evaluation scattering and
absorption indexes [7, 8]. It is a purified grampawder with white colour in the visible range.igh
substance has a transparency window up fendwith a stable reflection coefficient of 0.7-0&r f
thick layers [8, 38]. This material was applied iteeisma spraying and forming:

* homogeneous plane ceramic layer (thickness up&ar®n) of semitransparent coating for

spectrophotometric measurements [8] and

« same layer deposited on the piston surface ofttted tractor diesel.

Therefore, in addition to heat conduction by lattiwaves (phonons), inside semitransparent
coating (SHIC), heat is also transferred by a tadiacomponent (photons) which becomes
increasingly important at elevated temperaturesisTihe total energy transfer through the coating
increases above the heat transfer caused by sdidcbnduction alone.

Penetrating radiation certainly reduces the efficje of thermal barrier characteristics of
semitransparent coatings and degrades the insylability of SHIC. But the effect of their own
surface heat reradiation causes a decrease otsudmperature and allows displacing a temperature
maximum from a surface semitransparent materiad e depth of a SHIC-coating with the
expansion of the subsurface zone of volumetricaratdieating.

Thus, the simulated optical properties of the cmptvill determine the temperature field.
Experimental modeling of optical parameters isiedrout using spectrophotometric measurements of
control flat ceramic samples of different thickresss

Using the Mie scattering theory, the given optatameters will be determined by the selection of
the specific structural composition and the poyosftthe coatings [8].

Thus, technological structuring can ensure cortnal management of thermal conditions, form an
acceptable temperature gradient, temperature regfitiee coatings surface and gas in the combustion
chamber [7-10, 44-47].

The opaque materials represent a model in whickatiad of red-hot soot particles inside the
combustion chamber does not penetrate througixjitssed surface. This radiation is mainly absorbed
by the combustion chamber (CC) walls surface whith éxception of insignificant surface scattering
and a small surface reflection by the Fresnel lawhis work, the surface reflection coefficienttbe
irradiated opaque ceramics was assumed to be goBgl = Rs = 20% for the heat-insulating coating
HIC [8, 10, 37, 38]. An opaque HIC-coating is exaed as a material with the same known thermal
physical characteristics as the semitransparentSidating.

3. Numerically simulated temporal temperature of heatinsulating coatings under the action of a
radiant-convective monopulse

For rig testings, samples of semitransparent SHi&thags were selected with the best form of
calculated temperature profiles due to volumetnibssirface overheating and reduced surface
temperature of determined specific optical propertif ceramic coatings (See Fig. 2). Powder PSZ-
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ceramics based on Zy&8%Y,0; had the optimal optical characteristics based xpe@mental
measurement with the help of a serial spectrophetem

Selected ceramic powder was used both to makedhizot of flat samples and to spray on the
piston surface using plasma technology.

These coatings were semitransparent ceramics métbriificant absorptiont(= 14 m') and a high
scattering € = 2400 nit) in the near infrared region of the spectrum. Téfeection coefficients are ~
40% for thin (0.5 mm) and ~ 90% for thick layers.

To analyze the difference in the temperature msff opaque HIC- and SHIC-coatings for the
diesel combustion chambe€), these are the following interaction conditiomoge to the heat
characteristics of diesel during rig tests): thedeidotal thermal flux i), = 1.8 MW/nf, fraction of
radiant component is ~ 50%. The middle temperatuthe CC gas volume was constani(t) = 800
K. The coefficient of turbulent heat exchange4s3000 MW/(n? - K). Initial temperature i3, = 500
K.

Figure 2 shows the calculated temperature profiis&le thick layers of polluted opaque (line 2)
and rectified semitransparent (3) PSZ-ceramic ngafisoot deposition (1) and uncoated metal wall
(4) under conditions of constant heat pulse ofamatdand convective action on the internal wallghef
diesel combustion chamber.

TK
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The application of opaque coatings and soot ddpnositcreases the temperature of the piston head
surface by 100-200 K (see Fig. 2, lines 1, 2) statmg the generation of nitrogen oxides and often
with an undesirable regime of convective-radiati@at transfer inside CC. Under these conditions,
the ceramic coating can be destroyed due to a fargeng subsurface temperature gradient.

Thus, the thermal regime of the semitransparertir@pésee Fig. 2, line 3) is more suitable and can
be controlled by changing only the optical paramsetiie to the specific structuring, for example, th
selection of the prevailing orientation for the tsedng particles inside the ceramic layer [8, 48
46]. In this case, the coefficient of thermal coctity remains practically unchanged.

Proposed physical modeling of the optimal SHIC citrre should contribute to the required thermal
regulation of the CC’ gas atmosphere, preventmgverheating and better self-ignition of the fuel.
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4. Numerically simulated temporal temperature of heatinsulating semitransparent SHIC- and
opaque HIC-coatings at steady state

Let us take the model conditions for the internaface of the combustion chamb@C) wall of a
high-speed diesel during simulation of harmonicrabteristics at rotational spead= 3000 rpm to be
as follows: total thermal flux is ~ 1.8 MW/rat the “hot” phase of 10 ms (“cold” phase of 30 mih
fraction of radiant component of ~ 50% which vafiesn 0 up to 0.9 MW/mduring 2 ms [2, 3] (in a
short wavelength diapason of 0.8-2 um); direct hesd through coated pistap(t) changes up to
0.20 MW/nt at the “hot” phase. Gas temperature in CC volummanges from 330K to 2000K;
oscillation amplitude of the heat turbulent transfeefficient varies from 70 to 2000 WArK); gas
emissivity is 0.2 - 0.6. The heated top layer & tloating surface is considered as a black body wit
its own radiation in a long wavelength diapaso@-6fum.

Duration of cyclic times changing of the specifiedaracteristics was obtained according to
conditions of an optimum temperature regime of élposed moving piston with a SHIC-coating
during complex radiant heat exchange inside CCgif bpeed tractor engine TMZ-450D (see Fig. 1,
3, Table 1).
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Figure 3. Cyclic temporal temperature variatiofi&,t) for the front (exposed) (a) and back (b)
surfaces of the 0.5 mm ceramic top layer for oppie@ameters of the following coatings:
» opaque HIC-coating (surface heating R¢ = 20%) with temperature distributions
Top(0,1), Top(H.,1);
* semitransparent SHIC-coating (volumetric subsurfaeating with absorption index
= 14 m' and scattering one = 2400 ) with temperature distributions @te{0.,1),
TsedH,1).
A surface of oxidized metal substrate has reflectioefficientR,,. = 90%. The malty cycle of
piston movement is &=3000 rpm.

The temperature distributions in semitranspareyerka with different optical models are
simulated for the boundary conditions of the in&ésurface of the CC wall.
For example, the highest temperature of the frexpdsed) surface of semitransparent
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coating could be reached atd0, t) ~ 680K with transmissivity coefficients, ~ 79 %
(absorptionc =10 m* and scattering =1000 n indexes) and substrate reflecti@n=10%.

But changing of the SHIC structure allows one tardase transmissivity. up to 56 %
(with higher scattering of = 3000 ) and this surface temperature becomes loWgi0), t) ~
660K.

When increasing of substrate reflectigg. up to 90%, there is the same result of ~ 660K
for SHIC and its temperature (on the back sidéefdoating) can be loweFg. (H,t) ~ 615K, in
comparison to temperatufgy(H,t) ~ 655K for opaque coating.

When all radiant and heat fluxes are absorbed erirtint surface of opaque HIC-coatings,
then there is a high temperature gradient for opampatings in comparison to semitransparent
SHIC-coatings.

The smaller absorption and the higher scatterin§HfC cause a decrease of the surface
temperature of these SHIC-coatings in comparisah wie opaque one, near 20-30 degree
lower during one cycle fistrike of combustion) of piston movement.

Table 1.The main performance characteristics, design ardyg parameters of single-cylinder
experimental diesel engine TMZ-450D (Russian prtdog [9]

Numerical value or

Characteristics of the engine Physical dimensions d o
escription

Location of cylinders - Vertical
Piston distance / Cylinder diameter mm 80/85
Piston-swept volume din 0.454
Compressive ratio - 20
Rated speed mih 3000
Indicated power kw 8.0
Spec_if_ic fuel consumption at rated g/ (KW-h) < 280
conditions

Optical models of such SHIC-coatings have the Waithg characteristics: reflection of the semi-
infinite layer is ~ 80+90%, absorption is~ 10 ni" and scattering is~100-1000 1, indexes at
emittance coefficient are ~ 0.98 in near IR (foctswcoatings as a black body in the middle IR
diapason of ~2-5 um ).

Increasing the scattering of semitransparent cgati®) times leads to reducing temperatures on a
surface and in the subsurface area of SHIC of alibut 2 -3 K for action of the*1heat monopulse.

These results agree with data on temperature regifneeramic thermal barrier TBC-coatings for
aircraft engines [44, 45].

For steady state conditions, the overheating ofsiiméace of opaque coatings also exceeds the
corresponding value for semitransparent coatings.

Figure 3 shows the temporal temperature variatioritfe front (exposed) and back surfaces of the
0.5 mm top layer for opaqui, and semitranspareiite; coatings with optical moded =14 m', o =
2400 m* covering the reflecting layer of metal substi@tg= 90%. Peak temperatures of SHIC keeps
a value ofTs~650K.

For opaque coating, the surface temperature iSBy-higher during the steady state.

On a back surface of coatings, temperatures ak#liztal during achievement of 660 K for an
opaque HIC-coating and 620 K for the semitransgai®HIC-coating. One should note the
dependence of temperature maximum appearance obattie side of SHIC when decreasing the
substrate reflection coefficient.

The steady state of the thermal regime is reachre6H8 s.
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The simulation of temperature regimes shows esdetiipendence on radiating heat fluxes for
semitransparent coatings. It allows predicting ropti regimes of the operation for the LHR diesel
before development and production of the coatedbestion chamber using heat-insulating PSZ-
ceramics.

5. Experimental results of rig tests of high-speed tretor engine with piston coated PSZ-ceramics
In this work, the influence of the selected pistbeat-insulating semitransparent coating (rectified
PSZ-ceramic based on Zr&8%Y,0; with highly reflective and weakly absorbing quaiin near IR)
on reduction heat losses was evaluated with helpgakstings of the combustion chamber of high-
speed single cylinder tractor engine diesel TMZ{a%0able 1).
It is well-known that the heat-insulating surfadehe piston or other CC elements contributes to:
» growth of the intensity of combustion near thp ttead centre, where the maximum pressure
and temperature at the end of compression areadach
« increase of the brightness and temperature ofldinge in the initial phase of combustion and
shortening of the time of the combustion process.
The mechanical and fuel-energy characteristics@fith a heat-insulated piston were determined
in comparison with an unprotected piston (see #ig.

Figure 4. Unprotected piston (a) and protected one (b)
by semitransparent PSZ- ceramics.

Figure 5 shows that when using semitransparent insatation, the maximum value for heat
rejectiong.(e) almost equidistantly decreases by 10% vs thekshaft angle within the range from
20 to 80 degrees in comparison with the traditiaiesel CC without heat insulating inserts.

Heat rejection from the working medium in the alwgenf semitransparent thermal insulation
occurs in a wider range of CRA changing up to 8Qfird) the combustion process. But SHICs
application allows showing the effect of the regeng of useful heat accumulated inside coated
walls. During the expansion stroke, the accumulaest from the subsurface zone of this coating can
be returned back to the diesel CC, i.e. it adddtilgrturns into a useful work.

Some heat-energy and fuel characteristics of tipgatected piston and coated one of high-speed
tractor engine TMZ-450D have been shown in Figbr&s

The rig test of this diesel with the use of semigfzarent thermal insulation based on zirconium
oxide with yttrium showed that the best results @stained with high engine speeds from ~2800 to
~3400 rpm.

This is because combustion of fuel occurs almostptetely near the top centre compression
stroke since the surface temperature of the cqagtdn is higher than that for the unprotected ione
CC. It will promote more favourable conditions gfostaneous fuel ignition and reduction of its
combustion time. Thus, efficiency of the given @igrg regime of typical diesel tractor engine can b
managed and controlled when using SHIC with optisedécted optical parameters in a wide range of
their changes with negligible varying of thermoghgbparameters.
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Conductedstandard rig testir of the diesel allowed on® estimate the heat lossof up to 0.2
MW/m? through thecoated pisto (see Fig. 5).

The hourlyfuel consumption was determined by the weight netlied was calculated based
measurements of time and expenditure of the fuekd&xperimental test showa 2-3% lower
specific fuel consumption ¢e Fig.6); ~2-5% greater power and turningomen (see Fig. 7) on a
single cylinder experimental dieseln > 2800 rpmand it is due to the application of semitranspa
ceramic coating.

The maximum pressure of the dil cycle was increased by 3% dgcreasing of the exhaust ga
temperature up to 7%his shows improvements in the diesel's workingcess, especially in tt
expansion cycle, where fuel energy turns into usetuk.

The principleof the obtained resu was confirmed in a number of workacludingthe paper of
G. Woschni “Heat Insulation of Combustion Chambeall®/— a Measure to Decrease the F
Consumption of IC Engines” (1987)5].

The data obtained from the tractor dieselings with the coategiston by SHIC allowed
qualitatively confirmingvolumetric overheating based the predicted abovealculated temperatu
distributions in SHIC-coatingss well asa model version of the application of a complemghaque
coating using the example of allited semitransparent coating and soot depogisee Fig. 2, 3).

In Figure 8,the model of forming and removal of soot deposii®presentefor a heat-insulated
combustion chamber usingemitranspare PSZ-ceramics (with a selectedructure an optical
parameters)for operating modes of a sin-cylinder experimental engine at various speed
rotation: O rpm initial moment a); in the process of the speed increasmgs(d).

Oy» MW/m?
1
0.2 PR N
/ N
) \\
/ 2 N
0.1 1/ \\
S
7,
P s
-,
2=
00| =~
90 60  -30 0 30 60 CRA, grad

Figure 5. Heat losses), through the uncoated (1) piston headl coated (: one
with semitransparent he-insulating ceramicoating vs crankshaft rotation ar
(CRA) for highspeed tractor engine TN-450D (Russian production).

In the process of fuel combustion, the internafaaigrof CC is polluted with socdeposition (see
Fig. 8,b, 9. In this case, thadvantages of applyinsemitransparentoatingsin comparison with
opaque ones disapped@ut with the increasof diesel engine speed, soot can begin to be ga
intensively (see Fig. &l) [3].

The conducted ring testiagconfirmed the prospects of using semitranspa®étiC-coatings to
increase the efficiency of thidese and possibility of the surfademperature regulion for irradiated
ceramic insulation when conthiolg the nitrogen dioxide generation.
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6. Conclusion

The experimental research of heat-insulated elesmeitthe diesel combustion chamber and
theoretical evolutions of thermoradiative and terapee fields allow one to predict reasonably the
advantages of the application of semitranspareattingulating coatings which can ensure:

(1) volumetric absorption of penetrating thermaliation in near IR (as fraction of total heat flux)
inside the subsurface zone of semitransparent insalating SHICs- or thermal barrier STBCs-
coatings;

(2) accumulation of penetrating and absorbed theadiation in a near-IR during a combustion
process and it will promote the thermal regenenagitfect during other strokes of piston moving;

er 9/(KW-h)
310
Figure 6. Experimentally measured
280 values of specific fuel consumptiog.
/ dep_ending on diesel _speq&ddgring rig
/ testings (see explanations in Fig. 5).
- -
250
2200 2700 3200 N, rpm
Mg N-m
28
~ 1 . : .
N Figure 7. Turning momentM, depending
S : X . .
2 on diesel speed during rig testings (see
24 explanations in Fig. 5).
20

2500 3000 n, rpm

10
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(3) formation ofsubsurface temperature maximiandlow temperature gradie inside exposed
semitransparent heatsulating (thermal barrie materials and coatings at combine rac-convective
heat exchange;

(4) thermal cooling of a heatsulated metallic wall (substrategking into account tt conductive
heat removal to the irradiated surf of coating, its own reradiatian the long wavelengtt2-5 um)
range and volume reflection in the short wavelerf0.8-2 um) range;

(5) thermoregulation of theaternal heat insulated surface of thembustion chamber based
modeling optical propertiesdflection— transmissivity or absorption - scatterifigy) SHIC-coatings;

(6) simulationof surface temperature fthe piston head witsemitransparerSHIC-coatings (in
contrast to the use of opaque l-coatings) causing the possibility thfe reduction ¢ NO, generation
which will determineimproved managemerby temperatures of thdiesel combustic-exhaust
system;

(7) controlling surfaceemperatur of thecoated piston using semitranspa SHIC-coatings with
layer thickness of 0.5 mm and followin optical characteristics: reflecti@oefficien is ~ 70+90%
for the semi-infinite layerabsorptiol is k~1-20 m* and scattering ~ 1004000 n™* indexes (in the
short-wave regionemittance coefficieris ¢ ~0.98 (in the long-wave region);

(8) regulatedthermal stress and the damage threshold based on the selectionptidal
parameters of coatings due to variation of thecsiire, changing distributionf absorbed thermal
radiation and formation of th@esired temperature prof;

Figure 8. Model of forming and removal of soot depositifor a heatnsulated combustio
chamber (using PSZeramic) for operating modes of a Low-HeRgejectior (LHR) diesel at
various speeds of rotation at initial momea) and for processes of the speed increaup ton

= 2800 rpm (b, c) and mo&300 rpm d):
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1 - radiant component of the total heat flux in tleEamninfrared wavelength range with the
absorbed (&) and reflected () fluxes;

- flow of individual red-hot particles & and a soot depositiof2b, 2c) above ceramic
coating;

- flow of gasified carbon molecules;

- heat-insulating semitransparent coating;

- metal substrate;

- generation of nitrogen oxides molecules with maxin (@, b) and negligible (6, c; &,

d) concentrations at high and low temperatureshef hieated surface respectively for
opaque (B, b) and semitransparentc(2c) soot deposition or its absence (d) above the
SHIC-coating.

N

o0k, W

(9) standard rig testing confirmed the effectiveneSthe combustion chamber of the high-speed
diesel engine with the coated piston head usingRB&-ceramic (with selected composition of
ZrO,+8%Y,03) layer produced by a plasma-spraying technology;

(10) heat losses do not exceed the value of ~ \2rivi through the coated piston;

(11) improving characteristics of the LHR dieselnat 2800 rpm: ~2-3% lower specific fuel
consumption; ~2-5% greater effective power andedtdrque in comparison with the uncoated piston

(12) physical modeling of the optimal SHIC-coatihgsucture should contribute to the required
thermal regulation gas atmosphere of the combustiamber, preventing its overheating and better
self-ignition of the fuel.

The authors have substantiated the growth of tlieieafcy of LHR diesel with increasing
rotational speed by the effect of soot gasificagticeusing the changing of the coating’ transparency
and possibility of a wide range of variation saaiiig and absorption values due to structure mogdelin

The opportunity is shown for the structure of tikateng as an intellectual material able to monitor
thermoradiative and temperature fields inside cardmat insulation for control of heat losses and
formation exhaust gasses.

An application of the innovative ceramic with anustiable structure as semitransparent heat-
insulating SHICs-coatings (thermal barrier STBCatoms) for a new generation of diesel will
promote increase efficiency engines with contrahitogen dioxide generation.
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