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Abstract. The paper is dedicated to examining dynamics sditamersible underwater garage
in conditions of significant sea oscillation. Dugithe considered research, the mathematical
model of the electromechanical depth control systemnsidering interval parametric
uncertainty of the system and distribution of tetimass, was developed. An influence of sea
oscillation on submerging underwater garages awd tthepth stabilization processes was
analyzed.

1. Introduction

Nowadays, the World ocean is being actively devadomith the help of remotely operated and
autonomous unmanned underwater vehicles (UUV).rtteroto prevent any damage of expensive
underwater equipment, while ascending-descendingU® during sea oscillation, and to save a
resource of UUV batteries; UUVs are submerged tmperating depth in submersible underwater
garages (SUGSs). Such SUG can be submerged antizethhiith the help of a hoist with a tether,
mounted on a carrier vessel.

Sea oscillation may cause a rapid tension of th& &ther. Consequently, a joint between a tether
and a SUG or a SUG itself may be broken [1-4]. @mmgg this, a problem of mathematical
modeling of dynamics in a mechanical system, indgié hoist, a tether and a SUG is highly relevant.
To solve this problems, a proper mathematical mad®isidering interval parametric uncertainty of
the system, added masses of water and distribatiariether mass, must be derived.

2. Mathematical modelling of a tether with adistributed mass
Let us consider a process of manipulating a tenfsimoe of a tether with one fixed end by applying a
controllable force to another end. A flexible veali tether with length is influenced by two tensing

forces, applied to an uppesH{"" ) and a lower {F"" ) end of the tether. In a stationary conditioncéor
»F", applied to an upper end of a tether, is equalsom of a tether weight and a forde”" , applied
to a lower end of a tether. Static tension forceanh point of a vertical flexible tether, whichgsas
measured, is fully determined by three parametkssances between a considered point and ends of a
tether and a value of a tension force in a lowéntpaf a tethersF"" .

Let us make the following designations:"" — increment of a tension force, applied to a loarmeat
of the tether;sF" — increment of tension force, applied to an uppet @ the tetherpl,; — increment

of a length of a tether upper end};; — increment of a length of a tether lower eng}, — mass of the
tether.
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According to the theory of oscillating systems wdlstributed parameters, a transfer function
between an increment of a tether end length ardsidn force increment can be written as follows:

SFT R C+/bh(b)
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e dg Ay sh(l \/B) .
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where b:iz(s+ 2h), 2h= — accordingly, internal damping coefficients ampeafic
a

stiffness of the tether.
One can notice that the transfer function betwession forces of tether ends can be written as
follows:

AFT AR 1
W (s)= = = . 2
) AFT  AFT ch(/Ib) @)

By replacing hyperbolic functions in (1) and (2)thvifirst two terms of their Maclaurin series

2 2
ch(y/l;%b) =1+ by ; sh(y/1;2b) = /I, 2b(1+ i ID), transfer functions (1) and (2) can be writtericiews:
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Considering this, a mathematical model of a he&ilyet can be considered as an object with two

tT tT

inputs Al :{I

|bT

} and two outputsAF :{F

FbT:|. Let us derive an expression for increments o$iten

. FT =AFT -AF" =17 Wy -1°" [y (W,
forces applied to tether end%: ) ” e L
AF = AEP —AFPT =1°T [y - 1T [y (W
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The previous expression can be written in a mébnm as follows: = ; Where
FbT W W NV |bT
I F

. . . W bT wv bT W T wv 1T
a transfer function matrix can be Wr|ttenh§’.‘ N\/AF WA' ENAF }

Al bT AF 1T Al T AF bT

On the base of transfer functions (3) and (4),racttral diagram of a heavy tether mathematical
model, shown in figure 1, was developed.

bT AFT
AFLT

4

ﬂi E[T ﬂl F‘[T
’ WTF[T

, T v L7 2
WF[

Y

69

Figure 1. Structural diagram of heavy tether

3. Considering an added mass of water and interval parametric uncertainty
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If a SUG with a mass equal tm,, moves vertically under the water surface undduénfce ofF
force, then a force of water resistance is propodi to SUG acceleratioa, according toF = m*ma,
and:

=(Mye + ). (5)
where ¢ — an added mass of water. Added mass of waterndepen SUG geometry, motion

direction and water density. According to [5, G}, @lded mass of water of a parallelepiped shaped
SUG can be calculated with the help of followingession:

2
,LI=L(1 0425|9J76] (6)

2
4r? +12, +°

wherel — SUG width;l - SUG length.

Some parameters of the system are considered ewahones:[l;] [Cer] ] IMyse]. [0 -
Considering interval uncertainty of these paransi@) — (6) can be rewritten as follows:

AFT AT 1 TM] S + Xl 1] 2542 C]
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4. Mathematical model of a SUG depth control system

An electric drive of a carrier vessel hoist is désad with equation) (L—tt‘) =M, +M,, whereM; —

an actuating moment of a hoist drivé, — hoist moment of inertiagp — an angular velocity of hoist
drum rotation,M; =F;R — a moment of tether tension forae,— a radius of hoist drum. Actuating

moment of a hoist drive can be calculated withitblp of expressioM, =k (U, -U,), whereu, is

an output voltage of a hoist controlldf, — a moment transfer coefficient of a hoist, =k.w — a
voltage of counter electromotive force of a hoisva k, — a coefficient of counter electromotive
force of a ship hoist. Voltage, depends on a signal from linear setpoint adjuster hoist rotation
velocity. Input voltage of hoist), is determined by an amplifier withlg coefficient on the base of
U, =k, (Ug-U,), whereu, =k,w.

Considering this, a structural diagram of a matherabmodel of a SUG depth control system is
shown in figure 2.
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Figure 2. A structural diagram of a SUG depth control system
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5. Modeling a control signal and a distur bance signal

In order to provide a smooth acceleration and @eatibn, a signal of motion velocity setpoint
adjuster must have a form, shown in figure 3. fufe 3, T is a desired time of SUG submerging on
an operating depth.
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t; t t3 t, t,C

Figure 3. Setpoint adjuster signal of a SUG motion velocity

Figure 3 shows that a SUG accelerates in a tineeval [t, t,], moves with a constant velocity in a
time interval of [}, t3] and decelerates in a time interval fi]. From the f moment, SUG switches to
stabilization mode. To model an irregular oscitlatiof the water, a wave specter was used which
mathematical description is given in [7]-[10]. Acdimg to [7, 8], to model a random process with
desired spectral density, a “white noise” signaktrne processed with the help of filter with acaél
transfer function. One of such filters, modelingea oscillation, was derived in [7, 8] and has the
following transfer function:

10.966"

Wee (8) =5 2 2 :
(s +1.497%+ 1.361)s> + 0.488+ 0.664F + 0.8540.941 s>+ 2.468+ 6.28
According to [7,8], in order to obtain a “white sel' signal, it is proposed to use a standard block
White Noise from a Simulink-Band-Limited library.o@sidering this, a structural diagram of an
irregular sea oscillation was developed (figure 4).
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Figure 4. Model of an irregular sea oscillation

Output signal of the model is an ordinate of sedllation {, which determines a vertical motion of
a vessel. Its plot is shown in figure 5.
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Figure5. Plot of ordinate variation of an irregular seaikesoon

6. Modeling a submerging and a stabilization of SUG

In order to analyze an influence of a sea osdilfatin a submerging and stabilization process of SUG
an simulation modeling of a SUG depth control systwas performed with the help of Matlab
software. Results of simulation modeling of SUGrealging on a depth of 1000 meters in conditions
of 4 grade sea oscillation are shown in figure 6.
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Figure 6. Modeling an SUG submerging and depth stabilizatiori000 meters
Figure 6 shows, that mean square error of SUG itglisc0.8 mps.

7. Conclusion

The considered system, which includes a hoist tleeteand SUG, is a mass-elastic system with
distributed parameters. Such system may be infkeknby resonance oscillations, caused by
significant sea oscillations. These oscillationsynsause tether breaking, SUG ground impact and
UUV failure. In order to compensate sea oscillgtitime SUG depth control system must be
synthesized, which would damp sea oscillations duisUG submerging and stabilizing it on a
desired depth. The research resulted in a matheahatiodel, which allows one to synthesize such
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system, considering its interval parametric unaetyadistribution of parameters and inner intei@tct
between manipulated variables of the system.
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