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Abstract. This paper discusses the enhancement of flightlisyadf using an inspection drone

to scan the condition of buildings on low and higjtitude. Due to aerial perturbations and
wakes, the drone starts to shake and may be damé@gedof the mechanical optimization
methods it so add a built-in stabilizing mechanidfowever, the performance of this
supporting device becomes critical on certain fiyleights, thus to avoid losing the drone.
The paper is divided in two parts: the descriptidrthe gravitropism-like stabilizer and the
diagnostic of its status using wavelet transfororatind neural network classification.

1 Introduction

Observation is a key factor in the development @érece and technology. Human, analyzes the
surrounding and tries to develop models that mithé processes and mechanisms found in nature.
Drones, helicopters, manipulators are resultslmbaic modeling approach.

Some algorithms are developed based on physicaldfdion. For instance, as in the case of the
potential field method, the gravity concept is usedind an optimal trajectory of the mobile robot.
Similarly, the activation of some mechanisms arsedaon bionic approach. As an example, a
gravitropism-based manipulator grasp stiffness gharwith the surrounding environmental chemical
concentration. So, what is gravitropism and howm@gons can be used to enhance the performance of
an inspection drone?

While flying, it is important to get information abt the rotor condition of the drone. The jamming
or failure of at least one drive will cause therdrdo fall. Stabilizers are used to enhance thyhtfli
performance of the vertical takeoff and landingrét® (VTOL) especially when used to scan an on
altitude such as the high-rise building [1] or olow altitude being influenced by building wake$. [2

If the stabilizer is added, the definition of tleelinical state and flight control becomes critesl
the flight stability will be dependent on its pearftance. This can be achieved using methods and
means of diagnosis that allow the current statthefmonitored object to be assigned to one of the
predetermined classes of diagnoses.

One of the drawbacks of the quadrotor drones islé@s capacity, therefore, when diagnosing its
rotors, heavy measuring and diagnostic tools cabeatsed. It is preferable to define a way allowing
one to determine the state during operation withitbet use of additional sensors and monitoring
systems. One of these parameters is the curredinfethe motor. Quadrotors are basically equipped
with servo drives with low power supply, so the orotvinding can be used to obtain information
about its state.
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2. Gravitropism-like Stabilizer
Gravitropism is the phenomena, which urs in the plants, where cellsder the influence of gravit
(g9) and temperature (T) alter the concentration cracellular chemicalsChemical concentratic
controls the rate of reactions initng differential growthin the responding organ, which ultimly
results in an external bending respc.

By applying thegravitropism concept to a mobile robot, the diffaéi@ growth is regesented in
movement or rotation (fig.1).
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Figure 1. Single Passive Stabilizer of the quadrotor

Each complete rotation of the DC gear motor sheffieves full rotation of the sprir which
causes elongation equal to the pitch (P) of thengpif one considers thdhe latter is constant f
some angles of gear shaft rotatp, then one can compute elongatibhas follows

0
A=Ay + DAL= 2yt 5o

(1)

whered — the portion length of the spring that can be bepAAl — elongation:d — set of angles
where the rotation is fixed®, — the pitch of the springt,, — initial portion length of the spring th
can be bended.

The elongation speed of the spring can beined from equation (1) and it is function of |
rotation speed and pitch. It can be computed éswel

MDC N FA (2)
V)= —p=— (P, ——=
%~ 60 60 0 ~Ng

whereVy — the elongation speeM;,. — the rpm of the DC motoB, — the initial pitch F, — the
applied loaddescribed in equation ; N — number of active coil¥ — spring constar
The applied force can be calculated using equ#8}:
T

Fa = - Sing +ycosg (3)
cosQ — ysing
4 P
@ =tan ﬁ

whereT — the torquey — the radius of the springy — the friction coefficient;p — angular
functionof the pitch of the sprir.

As illustrated in Fig.2the stabilizer mechanism consists of group of gridescribed aboy
holding a load. In line of that, the whole mechanisan be described using the following critel
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Figure 2. Quadrotor active stabilizer
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[1]

whered is the distance of each actuator to the bodyecéntluding the deviation of the center
gravity from its ideal geometrigosition

3. Diagnostic of the stabilizer
The traditional method for analyzindiagnostic parameterfor the servomotc is through Fourier
transformation [B which has a number of significant drawbac4] not allowing its implementation f
automatic diagnostics of electric drives operatinger dynamic loads. In contrast, methods suche
wavelet transformation [Fjas no such constraints, and aloneto identify the current state of the dr

To analyze the state of the drive, the currentadignd the phase voltage of the new faultless
are considered as reference. Troubleshooting ifonpeed at the chacteristic frequencies -9]
(Table 1) by comparing the current spectrum withrisference spectrum using artificial intellige

Table 1. Fault identification schen

Fault Signal frequency

Commutation 2Kk [p [lfr

Rotor 2[pLT,, kK[f £2[plf,
Main power pulsation kil fS

Stator k [fr

where fs- the frequency of the current supplied to the brij fr - the rotational frequency of tt
rotor; k = 1,23- the harmonic number of the curre p - the number of poles.
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To analyze the current state of the drive, it isessary to recalculate the resulting Fourier tamsf
frequencies into a wavelet scale [10]. As a matdumection, any type of wavelet can be selected. In
the course of experimental studies on various seotors with and without load, the regularity is

shown in Fig. 3.
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Figure 3. Wavelet stator current signal: (a) healthy mofoy faulty motor

From these graphs it is seen that the wavelet icaaifs of a serviceable unloaded engine on
characteristic scales have insignificant fluctuadi@t drive’s start-up, then the process is praltyic
linearized. When a load occurs, the oscillatorycpss at the start of the engine is more obvious,
however it decreases with a certain periodicity ged repeated after a certain time interval. In
general, the process can be considered as stabkethiere is no significant increase in the amgditu

of the oscillations with time.

The coefficients of the wavelet transformation diaalty motor are much lower than those of a
faulty motor and have constant oscillations, whittrease when the load appears. The values of the
wavelet coefficients on scales that are not charestic of the introduced fault have the form shawn

Fig. 4.
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Figure 4. The wavelet coefficients of the feeding tensiothef serviceable and faulty engine a
uncharactastic scale: (a) a real sigt in the increased scale

Figure.4 shows that the signal has a high densitlylew values of wavelet coefficients, whilee
signal is regular and completely repeated at aifspedrequency. This type of signal is charactici
of all frequencies regardless of the technicalestditthe engine. Thus, according to the resulthe
analysis, one obtairfsse characteristissignals for diagnosis. Signals of characterisggrencies fo
serviceable unloaded and loaded engines are showAgil.a, uncharacteristic signal for "norr
status" in fig.2, while faulty loaded and unloagedjine "defectivein fig.1b.

4. Neural Network Condition Classification
The automatic determination of the technical st#tean electric drive can be done using ne
classification [11-14]As the initial data, the wavelet coefficients ased at a characteristic scale
the failure and ormal status signal. As an input, a matrix contajnfive values of characteris
signals is given. The output of the network is thess of the diagnosis: "1is not loaded properl
"12" is fully loaded, " 21 "defective and not loaded," 2- defective and loaded.

Figure 5 shows the neural classification structiitee network contains four layers: three hid
and an output. The hidden layer has five neurotis &vtangential activation functi; the output one

is a linear neuron.
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Figure 5. Neuralnetwork for electric drive technical condition amdde operation classificati

To train the neural network, theevenberg-Marquardt algorithm [1441i8 used, which is designt
to optimize the parameters of nonlinear regressiodels. The rest of training is shown in Fig
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Figure 6. Neural network training result for technical cdimh and operation mode determination
The simulation results are provided in table 2.

Table 2. Results of neural network for technical conditiomdaoperating mode
classification

Signals Network Results
Healthy off-load, (Fig.3,a) 11
Healthy loaded, (Fig.3,a) 12
Uncharacteristicsignal (Fig.4) 11
Faulty off-loaded, (Fig.3,b) 21
Faulty loaded, (Fig.3,b) 22

5. Conclusion

The paper discussed the stabilizing mechanism ofinapection drone operating based on a
gravitropism process. The technical status of thbil&zer was assessed using wavelet transformation
and neural network classification. Theoreticallye results of artificial intelligence diagnostictbe
stabilizer conditions was achieved. However, ang tduthe noise created by the springs, these sesult
might alter. Springs are sensitive components ameliable in certain conditions. Temperature,
pressure and humidity change the stiffness of thehanism as well. Hence, some constraints were
adopted while modelling this case study.

The presented results can be used for orientatippope and later physical implementation and
assessment.
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