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Abstract. Application of vibration provides possibility for production of high-quality harsh 

concrete mixtures thanks to the thixotropic effect. A variant of a vibration mixer is given as 

implemented in a commercial prototype. Features of the device are considered. A method for 

chain drive calculation is given. 

1.  Introduction 

It is widely known that application of vibration allows one to significantly intensify preparation of 

different polydisperse systems [1]. The most effective method is to use eccentric vibrating activators 

where the oscillations are induced by a kinematic method [2]. Stable vibration amplitude is among its 

advantages. In combination with constant frequency, it provides stable intensity of processing for 

stocks with diverse structural and rheological characteristics (granulometric composition, type of 

binder, etc). The methods developed to calculate balanced eccentric vibration activators [3] allowed 

creating a range of commercial prototypes of a vibration mixer, which confirmed their expediency and 

effectiveness in practice. 

2.  Current situation  

Experience with calculations and operation of vibration mixers with eccentric vibration activators has 

shown that they provide necessary balance of the mechanism (equilibrium of oscillating masses). As a 

result of that, dynamic loads of the mixer elements, as well as those of external objects (body, 

personnel, structures, etc) are within the limits of the standard.   

The work tool itself serves as a vibration activator and is supported on the drive shaft by 

connecting rod bearings. One of the bearings is eccentric. Dynamic balancing of the oscillating masses 

is ensured by counterweights (Figure 1).  
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Figure 1. Diagram of vibration mixer. 1 – body, 2 – mixed material, 3 – main bearings, 4 – drive 

shaft, 5 – work tool (screw), 6 – connecting rod bearing, 7 – eccentric connecting rod bearing, 8 – 

drive system, 9 – drive sprocket, 10 – counterweights. 

 

In this mixer, the driven sprocket of the screw drive is located in the zero eccentricity location of 

the connecting rod bearing case; as a result of shaft deflection and inaccuracies of fabrication, it 

oscillates with a certain displacement amplitude. The measurements of production mixers show that 

such displacements amount to 0.1...0.2 mm. As a result, significant dynamic loads arise in the chain 

drive due to pulsating changes in the driving strand longitudinal force leading to parametric oscillation 

of the chain drive.  

To reduce the dynamic loads and chain oscillations, it is proposed to install a tensioner consisting 

of two spring-loaded sprockets: one – on the driving strand, another one – on the driven strand.  

 

3. Analysis methodology 

A computational model was analyzed to find out the influence of an additional spring-loaded sprocket 

on the driven strand (Fig. 2). 

  r

L L

h h

L

O

A

A1

B

B1

To

 

Figure 2. Computational model. 

 

The driving sprocket is located at point О, the driven sprocket is at point В, which execute circular 

oscillations with the amplitude of L = r cost.  

In this case, tension Т(t) of the chain is equal to: 

T(t) = To + T(t), 

where To is the tension of the chain caused by the operating load; T(t) is a variable component. 
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To determine the variable component, two states were considered: ОАВ (State I) and ОА1В1 (State 

II). 

Supposing that the chain is inextensible, let us get the chain length values being equal in both states 

and from the geometric ratios which one may determine as: 
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From an equilibrium condition between the spring tension and chain tension:  
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where T0  and  T1 are chain tension values,  k  and  l0 are spring stiffness and deformation (in State 

I). 

Then,   
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Stability of natural oscillations of the driving system may be analyzed if one replaces the real chain 

with a string (the accuracy is enough for practical calculations) [4]. Then, the task of determining 

transverse oscillations for this case is given by: 
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with limit conditions in points  О (x=0) and В (x  2L): y1(0) = 0;  

y2(2L) = 0 and matching conditions in point А (x  L): y1(L)=y2(L)   
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If we are to solve the problem formulated as y1,2 ( x, t ) = U( t ) f1,2 ( x ), then it is possible to divide 

variables:  
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where  is a certain constant. 

From formula (1), two equations may be obtained: 
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Equation (2) shows the oscillating nature of the process, while equation (3) determines 

eigenvibrations. 

Solution of the second equation leads to a system of two equations: 
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Solutions of the second (transcendental) equation may be obtained numerically, e.g., in case 
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Further, it is necessary to move on to studies of equation (2), which characterized the oscillating 

process.  

After variable change z t 1
2
 , one may obtain:  
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Equation (4) is a Mathieu equation and is usually written down as: 
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In this concrete case: 
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From Mathieu function theory it is known that when values of parameters a and q are in the 

instability regions, solutions of the equation increase without limit with z . In the case under 

considerations, this corresponds to an unstable oscillation mode. With the help of a well-know Ince-

Strutt diagram, it is possible to demonstrate that the oscillation mode will be stable if: 

1. value of 

2q

a
  is small; 

2. parameter a  does not coincide with squares of natural numbers for all  n n

( ) ( ),1 2
. 
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4. Practical considerations 

Selection of the spring is performed in the following way. Deformation value lo  is selected from 

design considerations; then the spring stiffness and its design characteristics are determined from 

known nominal force T0  of the chain drive. Driven sprocket oscillation amplitude r within the limits of 

0.1...0.2 mm and values of h and L are used to calculate parameters a, q,  of the chain drive. If the 

conditions are met, the calculation is stopped. Otherwise, it is necessary to repeat the calculation from 

different starting conditions. 

The calculations show that installation of an elastic bearing onto the driving strand of the chain 

drive provides changes in longitudinal stress in a wide range of parameters k l h L, , ,0  with the 

longitudinal stress cycle asymmetry coefficient of 0.95...0.98 . The mode of oscillation is stable, 

because the value of 
2q

a
 is small.  

A chain drive of a commercial prototype of a vibration screw mixer has been designed in 

accordance with the proposed method of calculations. Performance testing confirmed correctness of 

the calculations. Installation of an elastic bearing provided a significant reduction of chain oscillations. 
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