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Abstract. The article presents the results of a search for optimal sparing-out strokes when sur-
face grinding aluminum parts by high-porous wheels Norton of black silicon carbide 
37C80K12VP using fuzzy logic. The topography of grinded surface is evaluated according to 
the following parameters: roughness – R� , R��� , S�; indicators of flatness deviation – 
EFE��� , EFE�, EFE
; microhardness HV, each of these parameters is represented by two 
measures of position and dispersion. The simulation results of fuzzy logic in the Matlab medi-
um establish that during the grinding of alloy 1933Т2, the best integral performance evaluation 
of sparking-out was given to two double-strokes (d=0.827) and the worst – to three ones 
(d=0.405). 

1. Introduction 
Surface grinding is the most efficient and known method of ensuring the high levels of accuracy and 
quality of the processed surfaces of the parts. Taking into account a small depth of cutting and the 
great pliability of the technological system during the grinding, the roles of elastic deformations of the 
workpieces are increasing. In this regard, at the end of the processing cycle the surface sparking-out is 
often made; it is done without cutting-in into the depth. It is used to remove the layer of elastically 
deformed material, eliminate the poor shape precision due to elastic deformations of the workpiece 
and possible surface defects such as small burn marks, scratches, etc., as well as to reduce surface 
roughness. According to [1, 2], surface sparking-out can reduce roughness height parameters, macro-
fluctuations and increase surface microhardness and compressive residual stresses by modulus. 

High quality characteristics and new required properties of modern machines and assemblies in the 
aerospace, automobile, electronic and other branches of mechanical engineering require the use of 
precision components and parts. The problem under discussion is multi-purpose. It is provided for di-
agnostics, optimization of adaptive control and other methods at different stages of the product life 
cycle: manufacturing, research, exploitation in working conditions, repair and adjustment processes. 
For each of them there are special requirements to identify the quality (accuracy, localization of pa-
rameters, operational efficiency) of the objects involved. In this study, fuzzy logic (FL) was used to 
increase the efficiency of sparking-out. 

FL is one of the few scientific research fields that were created in the United States, developed in 
Japan and newly accepted by the Americans after the hopeless loss of the strategic initiative [3]. FL is 
based on the fuzzy-set theory where the membership function of the element set is not binary (yes/no), 
and can take any value in the range of [0;1]. It gives the opportunity to define concepts that are fuzzy 
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by their very characteristic: "high", "fast", etc. FL helps to evaluate residual stresses and cutting abili-
ties of grinding wheels [4]. The work [5] discusses the use of FL in databases queries and its ad-
vantages over classical logic. 

The aim of this work is to determine the optimal sparking-out stokes on a surface topography while 
the surface grinding aluminum alloy 1933Т2 using fuzzy logic. Surface topography is characterized by 
the roughness parameter – R� , R��� , S� (GOST 25142–82), indicators of flatness deviation – 
EFE��� , EFE�, EFE
 (GOST 24642–81), which are named as the greatest arithmetical mean and 
quadratic mean, and by microhardness HV (GOST 9450–76).  

Methods of their measurement and calculations are presented in works [6,7]. 
 

2. Methods of experimental study 
The methodology comprises three successive steps: the conditions of a natural experiment, interpreta-
tion techniques of experimental data based on statistical methods and application of FL. 
2.1. The methodology of a natural experiment. The research has the following conditions of experi-
ments realization: surface grinding machine model - 3G71М; the subject of investigation – samples of 
high strength aluminum alloy 1933Т2 (σUST=480-490 MPa; σ0.2 =175 MPa) with dimensions 
V×V×N=40×40×45 mm and grinded area - V×V; the shape and size of the high-porous wheels (HPW) 
Norton of black silicon carbide – 01 250×20×76 37C80K12VP [8]; technological parameters: wheel 
speed - vw=35 m/s, longitudinal feed - sl=7 m/min, cutting depth - t=0.015 mm, the operating allow-
ance - z=0.15 mm; flooded coolant - 5% emulsion Akwol–6 (TU 0258-024-00148845-98) with 7-10 
l/min flow. The spindle with the wheel is lowered to depth t in the time point when the longitudinal 
table with the workpiece is shifted to the leftmost position relative to the operator. Taking into account 
the fact that the scheme of feed specifying sc is selected in mm/double-stoke, and an abrasive tool has 
a clockwise rotation, from left to right; the table stroke is working and running while the upper wheel 
is cutting-in. Its reverse is considered as sparking-out, finally forming the topography of the grinding 
surface in the conditions of down cutting. The samples were fixed with clamps on the clamping plate 
of the universal modular fixture, which excluded the error of location when the form deviation takes 
place.  

With the aim of the information content reduction, the variable grinding conditions were described 
by a code (e, i), which is particularly convenient when the response is presented in the form of yei. In-
dex e = (1;7) is distributed according to the quality parameters of the surface. Roughness is character-
ized by parameters: Rai = y1i, Rmaxi = y2i, Smi = y3i which are located on the surface in the direction of 
vector sl and exceeding their analogues in the orthogonal direction (along vector sl).  
Flatness deviations are measured by three indicators: the main one is EFE���� = y
�  and two other 
auxiliary arithmetic means are EFE�� = y�� and a square mean is EFE
� = y��. Microhardness HV� is 
marked as y7i. Code i = 0; 8����� characterizes the amount of sparking-out strokes, which are represented 
by odd numbers: 0 – without sparking-out, 2, 4, 6, 8 – reflect 1-4 double passes. 
 
2.2. Experimental statistics. The processes of modeling, prediction and optimization of grinded 
workpiece surface quality are based on the use of experimental data. Application of the statistical 
method in the study of grinding is due to the fact that the abrasive grains have an arbitrary shape, dif-
ferent height in the radial direction, a chaotic arrangement in the bundle, a different number of active 
grains and cutting edges per unit of the wheel contact area when cutting-in. The foregoing allows con-
sidering the observations as continuous random quantities (RQ) and evaluating their behavior on the 
basis of probability-theoretic approaches. To accelerate the computation, the authors selected program 
Statistica 6.1.478.0. The experimental data are presented in the form of independent sets [9–11]: 

{y���}, e =  1; 7�����, i =  1; 4����� , v =  1; 30������,     (1) 
where v is the number of parallel experiments, which are advisable to carry out with the same v (in 
this case v = 30). 

Statistical methods are divided into two groups: parametric and nonparametric, in particular the 
rank group. Each of them has "the home field" [9] for effective application. For the first method, two 
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constraints on the RQ (1) are required: homogeneity of deviation dispersions and normality of distri-
butions. During grinding, these requirements are often violated in varying degrees, and that may be 
accompanied by a significant shift in assessments. In such situation, it is better to use the rank criteria. 
They do not use the properties of a particular family of distributions; because of this, they have an 
edge over the normal theory competitor "on the home field".  

To estimate the RQ, the following one-dimensional distributions of frequencies were involved [9–
11]: 

– measures of position (reference values) 
average y��� = y�� ,       (2) 
medians y"��;        (3) 

– measures of dispersion (precision)  
standard deviations SD��,      (4) 
ranges R�� = |y��� − y��&|��,       (5) 
quartile latitude QL�� = |y).+� − y).,�|��;     (6) 

the parametric method is based on (2), (4), (5), and rank statistics - on (3), (6). Acceptance of null 
hypothesis H0 regarding (about) the homogeneity of dispersions and normality of distributions (1) is 
considered in [6,7]. 

2.3. The simulation method (technique) of fuzzy logic. FL is equivalent to the theory of fuzzy sets 
Aei, i.e. classes with defuse boundaries represented by sets of ordered pairs, composed of elements yeiv 
of universal sets {yeiv} and the corresponding grades of membership µA (yeiv): 

A�� = ./y���, μ12y���345y��� ∈ {y���}7, 
where μ12y���3 is the characteristic functions which indicates the degree of membership y��� of 

fuzzy sets Aei. 
Execution of the FL simulation process for the experimental values was carried out in Matlab, us-

ing a special bump pack Fuzzy Logic Toolbox. The last has a simple and well-designed interface that 
makes it easy to design and diagnose fuzzy models [4,5]. Desirability function dei proposed by Har-
rington [12] is used to evaluate the surface quality of workpieces. In the basis of its construction, there 
is the idea of conversion of the natural values of particular responses into the dimensionless scale of 
desirability or preference. The scale of desirability refers to the psychophysical categories. FL is im-
plemented as three sequentially executed procedures: differential selection sparing-out strokes 
i =  0; 8�����   for each parameter of surface quality; the separate assessments of the material machinability 
for all the attributes of roughness are e =  1; 3����� and form accuracy e =  1; 7����� ; integral evaluation of the 
material machinability takes place for all attributes of output parameters. 

 
3. The results of the study and their discussion 
Table 1 presents the test results of the observations for homogeneity of dispersions (acceptation of null 
hypothesis H0) according to three criteria: 1– Levene’s, 2 – Hartley's, Cochran's and Bartlett’s (pre-
sented in the program with one set); 3 – Brown–Forsythe’s. 

 
Table 1. Test of dispersions homogeneity at a confidence level of p=0.05 

Parameter  
Expected confidence level p for criteria  Acceptance 

of Н0 

 Levene’s 
Hartley's, Cochran's 

and Bartlett’s 
Brown–Forsythe’s. 

R�8 0.0853 0.0430 0.2831 – 
R���8 0.5587 0.2018 0.8939 – 
S�8 0.2158 0.0221 0.2253 – 
EFE��� 0.0557 0.0867 0.2438 – 
EFE� 0.0001 0.0001 0.0261 + 
EFE
 0.0001 0.0012 0.0206 + 
HV 0.0321 0.0001 0.0468 + 
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In table 1, the sign «+» means that indicators of H0 for observations were taken at least for two cri-
teria, and the sign «–» means that H0 indicators were rejected.  

Verification of distribution normality (H0) of observations (1) using the Shapiro–Wilk’s test (W) is 
shown in table 2. According to theoretical statistics, H0 is confirmed in satisfaction of inequalities: p� 
> 0.5, i=0; 8�����. Thus, the total number of analyzed situations is N=7×5=35. Test results (table 2) showed 
that H0 indicators have been accepted in 1 of 35 cases, which is highlighted in the table. In connection 
with the foregoing information, the nonparametric statistics method is characterized by the measures: 
(2) and (6) were chosen as "the home field" for interpretation (1). The nonparametric method does not 
impose restrictions on the random values; it is less sensitive to "noise" and gross errors, which has got 
into a random sampling for one reason or another. 

 
Table 2. Normality check of H0 distributions for the Shapiro–Wilk’s criterion  

Parameter  
Sparking-out i=0; 8����� 

0 2 4 6 8 
Н0 for normal distribution  

R�8 0.0322 0.0539 0.0011 0.0013 0.3873 
R���8 0.1874 0.0555 0.0011 0.0098 0.4715 
S�8 0.0077 0.0637 0.0018 0.2118 0.0123 
EFE��� 0.0113 0.0409 0.0154 0.0000 0.0002 
EFE� 0.0009 0.0000 0.1547 0.0033 0.0042 
EFE
 0.0011 0.0015 0.0067 0.0005 0.0011 
HV 0.5676 0.0001 0.0001 0.0009 0.0039 

 
Table 3. Input data of workpieces surface quality for FL modeling 

Parameter 
(e = 1; 7�����) 

Measures  
µ 

Number of sparking-out strokes i = 0; 8����� 

0 2 4 6 8 

R�� (1) 
y"8� 0.167 0.172 0.147 0.161 0.191 

QL8� 0.074 0.096 0.070 0.077 0.054 

R���� (2) 
y",� 1.111 0.992 0.864 1.030 1.179 

QL,� 0.405 0.384 0.466 0.497 0.368 

S�� (3) 
y":� 65.13 96.80 92.15 97.65 92.49 

QL:� 26.93 46.86 28.10 29.85 26.33 

EFE���� (4) 
y"
� 8 6.5 7.5 8 6 

QL
� 4 3 2 2 4 

EFE�� (5) 
y"�� 4.58 3.25 3.75 3.79 3.67 

QL�� 2.35 1.23 0.73 1.73 1.96 

EFE
� (6) y"�� 5.02 3.88 4.38 4.81 4.14 
QL�� 2.67 1.81 0.54 1.62 2.26 

HV� (7) 
y"+� 1469.7 1724.8 1735.5 1698.1 1723.9 

QL+� 128.1 169.8 163.8 211.5 164.6 
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Figure 1. Descriptive non
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Table 4. Results of the first stage of fuzzy modeling  

Sparking-
out i=0; 8����� 

Desirability function d�� for parameters  
Parameter (e = 1; 7�����) 

R�� 
(1) 

R���� 
(2) 

S�� 
(3) 

EFE���� 
(4) 

EFE�� 
(5) 

EFE
� 
(6) 

HV� 
(7) 

0 0.528 0.467 0.882 0.130 0.130 0.130 0.528 
2 0.158 0.700 0.159 0.577 0.886 0.807 0.847 
4 0.857 0.640 0.566 0.643 0.886 0.886 0.886 
6 0.545 0.158 0.430 0.528 0.518 0.409 0.477 
8 0.528 0.528 0.576 0.528 0.474 0.484 0.884 

 
Based on the results shown in table 4, let us start the second stage of the simulation, the task of 

which was the separate evaluation of grinding quality by two sets of attributes: e =  1; 3����� and e =  4; 6�����. 
 

Table 5. Ranges of input variable 
Type of estimation Input parameters  
Linguistic  Bad Normal Good 
Numerical [0.1;0.5] [0.1;0.5;0.5;0.9] [0.5;0.9] 

 
Table 6. Ranges of output variable 

Type of estimation Output parameters 
Linguistic  VB B Sat G VG 
Numerical d [0.0; 0.2) [0.2; 0.37) [0.37; 0.63) [0.63; 0.80) [0.8; 1.00] 
Note: VB – very bad, B – bad, Sat – satisfactory, G – good, VG – very good. 

 
The value for each variable input lies in the interval of [0;1] (table 5), and the degree of desirability 

including 5 estimates: VB, B, Sat, G, VG (table 6), was involved in the output variable. Microhardness 
was excluded from the analysis of the input parameters due to the fact that it is represented by one at-
tribute. 

Table 7 shows the simulation results obtained after the second and third stages. It was found that 
using the fuzzy model made it easy to evaluate and search for the individual and cumulate parameters. 

 
Table 7. Impact of complex estimation of the sparking-out stroke numbers 

on workpiece surface quality of alloy 1933Т2 
Sparking-

out  
i=0; 8����� 

Roughness  Form accuracy  Microhardness  Integral estimation  
d�•, 

e = 1; 3����� 
Conclusion  d�•, 

e = 4; 6����� 
Conclusion d�•, 

e = 7 
Conclusion d�•• Conclusion 

0 0.705 G 0.114 VB 0.528 Sat 0.422 Sat 
2 0.230 B 0.741 G 0.847 VG 0.602 Sat 
4 0.723 G 0.781 G 0.886 VG 0.827 VG 
6 0.287 B 0.479 Sat 0.477 Sat 0.405 Sat 
8 0.524 Sat 0.500 Sat 0.884 VG 0.714 G 

 
From table 7 it is seen that the number of strokes i=4 (d=0.723) has the best estimate for roughness 

parameters; and the worst – i=2 (d=0.23). In terms of form of accuracy, the highest estimate is predict-
ed when the number of strokes is i=4 (d=0.781), and the smallest - when i=0 (d=0.114); for micro-
hardness, respectively – when i=4 (d=0.886) and i=6 (d=0.477). As seen from table 7, the best integral 
assessment of sparking-out efficiency is given for i=4 (d=0.827) and the worst – for i=6 (d=0.405). 
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4. Conclusion  
The involvement of non-parametric estimates of measures of position and dispersion, which includes 
median and quartile latitude, was justified in terms of violations of homoscedasticity and normality of 
the distributions of experimental data for implementation of the FL. 

The statistical interpretation results of the data predicted that the smallest measure of dispersion for 
value R�  takes place when i=4, for EFE��� i=2. The highest process stability for QL has been ob-
served when i=8 for parameters R�, R��� and S�; i=4, 6 for EFE���; i=2 for HV, i.e. it does not re-
veal an unique estimate.  

The simulation results determined that the best integral assessment of sparking-out efficiency was 
given i=4 (d=0.827) and the worst – i=6 (d=0.405). 
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