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Abstract. Introduction of new machines and new technologies of polyethylene pipeline 
installation is usually based on the polyethylene pipe flexibility. It is necessary that existing 
bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation 
of its strength characteristics. Derivation of the mathematical model which allows calculating 
analytically the bending stress level of polyethylene pipes with consideration of nonlinear 
characteristics is presented below. All analytical calculations made with the mathematical 
model are experimentally proved and confirmed. 

1.  Introduction 
Polyethylene pipes are getting more and more widespread in engineering structures lines.  

They are not only lighter and cheaper than metal ones, but also are more flexible and resistant to 
physical impacts. Introduction of new machines and new technologies of polyethylene pipeline 
installation is usually based on the polyethylene pipe flexibility [1]. 

However, it is very important to ensure that existing bending stress does not lead to the irreversible 
polyethylene pipe deformation and to violation of its strength characteristics. 

As a result, it can affect operating performance of the pipeline (including its reliability and 
operational life). 

2.  Current status review 
One of the ways to reduce polyethylene pipelines installation costs is employment of special 
mechanisms operating on the basis of cable-laying machines or drainpipe-laying machines [2, 3]. 

The specifics of operation of these machines is that small diameter polyethylene pipes (less than 
110 mm) are transported from a manufacturer to a pipeline installation site in spools.  

A spool is installed on a pipe-laying tractor which allows laying a pipeline at a required depth 
without making and backfilling trenches (see figure 1). As a result, the pipeline construction prime 
cost is significantly reduced. 

 
 
 

 
Figure 1. Scheme of the pipe-laying tractor 
1 – spool,  
2 – polyethylene pipeline, 
3 – working tool 
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The practical use of this technique requires scientific justification in order to ensure guaranteed 
retention of the polyethylene pipes’ strength characteristics as they are exposed to several types of 
stress during laying. 

It has been proved that the maximum level of stress occurs at the curvilinear surface when the pipe 
passes through the pipe-guide unit of the working tool [4]. Due to a relatively small bend radius in this 
area, the material of the pipe is shortly exposed to elastic and plastic deformations. It is necessary to 
ensure that these impacts do not lead to any irreversible deformations. So, the research of stress-strain 
state should be conducted in order to retain strength characteristics of the pipes. 

3.  Principal Conditions 
Since the length of the pipe is much greater than its diameter, the fundamentals of the curved rods and 
thin-wall pipes theory can be used to describe its stress-strain state. In this case, the nonlinear 
characteristics of the material should be considered [5, 6]. 

Differential Area (dA) of the pipe cross-section (Figure 2) is described by the following formula: 
 αδ drdA ⋅⋅= ; 

αsinry =
 

    (1) 

 

 

Figure 2. Polyethylene pipe cross-section 
 
 
 

 

 

 

The value of internal forces (Figure 3) in the cross-section of a bended pipe should be calculated by 
integrating stress over area: 
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а)        b)  

Figure 3. Deformation of the bended pipe section exposed to a) tensoin ( sN ); b) bending moment (

sM ). 
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The tension deformation ( sN
) is characterized by rotation of the section around the curvature 

center at the dφ angle:  
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The bending moment deformation ( sM
) is characterized by rotation of the section around its own 

axis: 
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The total stress of the pipe section (Figure 4) is composed of the stress that occurs during bending 

along the axis of curved rod Sσ
(Pa) and radial stress Tσ (Pa). The radial stress occurs if there is the 

internal gas pumping pressure. Since the pipeline installation process is considered, the radial stress 
will not be taken into account. 

 

 

Figure 4. Stress and strains of the pipe section. 
 
The total relative deformation of the bended pipe section from bending moment: 

.NMs εεε +=
 

Stress caused by tension force and bending moment can be calculated as follows: 
 .scs E εσ =

 

                                   (5) 

To take into account nonlinear characteristics of the material, the variable (secant) modulus (Ec) 
notion is used. 

The variable (secant) modulus is changed depending on the material stiffness coefficient (b - Pa-2) 
and is calculated according to the following formula: 
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where 0
E

 is instantaneous elasticity modulus of the material (Pa) and inσ
 is stress intensity (Pa). 

4.  Differential Equations of the Mathematical Model 
Taking into consideration formulas (3) and (4), formula (5) can be written as: 
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Applying this formula to formula (2), one can get the following: 
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Applying formula (1) to (8), one obtains the following formulas for internal force calculation: 
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. 
After introducing the notations, formulas (9) for internal force calculations are written as follows: 

;dErB
cN ∫=

π

αδ
2

0

;dsinErD
cN ∫=

π

ααδ
2

0

2

 

;d
sinrR

sin
ErB cM ∫ +

=
π

α
α

αδ
2

0

2
∫ +

=
π

α
α

αδ
2

0

2
3 d

sinrR

sin
ErD cM

 

ϕ
β

ϕ
θ

d

d
B

d

d
BN MNs +=

; ϕ
β

ϕ
θ

d

d
D

d

d
DM

MNs
+=

,                             (10) 
where BN, ВM, DN, DM are characteristics of stiffness, stretching and bending in consideration of 

nonlinear characteristics of the material.  
When considering (Figure 4) and comparing the equations of statics, one obtains the following: 
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When applying formulas (10) to the equations of statics, there is the following: 
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After calculating the derivatives, the differential equation system becomes as follows: 
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5.  Discussion and Results 
Solution of the differential equations system (12, 13) should be attended by consideration of the 

limiting conditions in relation to variables (θ ) and (β ). The section of the pipe passing through the 
pipe-guide unit (Figure 1) of the working tool is described as a curved rod with two sliding joints on 

its edges. The derivatives of unknown functions (θ ) and (β ) are third derivatives and their solution 
requires implementation of six boundary conditions.  

It is necessary to consider that if the stiffness along the length of the bended pipe is regular and the 
material is deformed in the elastic linear range, the secant modulus (Ec) takes on a constant value equal 
to the elasticity modulus (E0). In this case, equation system (12, 13) is simplified to the following 
form: 
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In order to evaluate the changes of the stress and strain state of the pipe, the finite differences 
method has been used. This method is successfully applied if the differential equation of the task is 
known. 

The method essence is to substitute the differential equation of the task with an algebraic equation 
system with the use of approximate expressions for the derivatives of the required function. The values 

of derivatives (θ ) and (β ) for all points of the computational scheme have been calculated and 
defined by the method [7]. 

Accurate solution of the equation system (12 and 13) can be done using Navier equation. In this 

case, to solve derivatives (θ ), (β ) and (q) should be written in Fourier series: 

 ( ) ( ) ( ).2cos;2sin;2sin ∑∑∑ === ϕϕθθϕββ mnmnmn qq  

The only particular case of a possible solution using a precise method is the case when the pipe is 
hinged at both ends. In this case, the values of boundary conditions are equal to 0 (ϕ1 = ϕ2 = 0, δ1 = 

δ2 = 0, 021 == γγ ). 
The legitimacy of analytical estimation, defining the values of stress depending on the bend radius, 

is proved experimentally for polyethylene pipes of different diameters. 
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