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Abstract. Surface grinding of flat workpieces made of alloy VT22 was conducted by the pe-
riphery of a highly porous wheel (HPW) from cubic boron nitride CBN30 B107 100 OV K27 
КF40 with three processing techniques (ij ). They are 10 - cross-feed per stroke, HPW cutting 
into a workpiece changes alternately from up to down; 12 – cross-feed per double stroke during 
the up HPW cutting-in at the working stroke; 22 – cross-feed per double stroke during the 
down HPW cutting-in at the working stroke. With the involvement of artificial neural network 
models, it was revealed that to improve the quality of surfaces and stability of its formation, 
grinding should be conducted if ij  = 12. 

1.  Introduction 
It is known that one of the final methods of mechanical processing is grinding, ensuring high precision 
(6-10 tolerance degrees) and a small surface roughness (Ra = 0.32 ÷ 2.5 µm) at a sufficiently high per-
formance and low cost of commercial products. This allows the grinding operation to be widely used 
for the manufacture of high quality critical parts of aircrafts, including titanium alloy parts [1]. 

Titanium alloys belong to hard-to-machine materials. But all brands of titanium alloys, especially 
high strength (σstrength limit > 1000 MPa), have low workability by traditional abrasive tools 
(electrocorundum, silicon carbide) of standard porosity: (6-7)th structures. The reasons for their low 
grinding ability are adhesion and diffusion interaction between the abrasive and the material being 
treated, as well as the intense loading of the working surface of an abrasive tool [2, 3]. Highly porous 
wheels (HPW) made of cubic boron nitride were developed for their grinding; sizes of pores in these 
wheels are much larger than in the standard ones. That promotes better chip disposal, reduces wheels 
loading rate and improves the conditions of grinding zone cooling [4]. 

Another way to improve the grinding process of titanium alloy is the choice of specifying methods 
of cross-feed and wheel cutting-in into a workpiece. Nevertheless, there is a problem with the integrat-
ed assessment of a large number of parameters of workpieces’ surface quality, which must be simulta-
neously provided to ensure each of the required operational properties. The surface topography is es-
timated by measures of position and dispersion [5, 6]. The last one plays an important role, especially 
in a flexible automated production, as it holds the process output parameters at a constant level during 
the entire operation time. A large number of the studied variables lead to difficulty in complex evalua-
tion of conventional statistical methods. Models of artificial neural networks (ANN) have a number of 
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valuable properties that make them suitable for modeling complex, non-stationary processes that de-
pend on many input variables [7, 8]. First, to build a model of the ANN process does not require ana-
lytical expressions that reflect the physical phenomena of the process. The ANN model is built auto-
matically through a teaching procedure, based on information about the process. Second, ANN models 
are able to process information simultaneously from different sensors and physical quantities, which 
must not necessarily be correlated. Thirdly, the ANN models can be effectively combined with physi-
cal models to further improve simulation performance. Because of these properties, ANN models are 
considered as an effective tool for modeling of grinding processes. Using the ANN models, multiple 
tasks of classification and regression analysis are mainly solved.  

The aim of this study is to evaluate specifying methods of cross-feed and cutting-in of HPW 
CBN30 B107 100 OV K27 КF40 into a workpiece made of titanium alloy VT22 by quality of its sur-
face and process stability using ANN. 

2.. Methodology of the experiment 
The subject of the research is workpieces of titanium alloy VT22 with dimensions L×B×H = 
40×40×40 mm, processed by machine model 3E711B along plane L×B without sparking-out at the 
end of the cycle; the flooded coolant is the 5% emulsion “Akwol–6” (TU 0258-024-00148845-98) 
with a 7-10 l/min flow. The number of parallel observations is n = 30. The form and dimensions of the 
HPW and grinding modes are given in table 1. 
 

Table 1. Abrasive tool and grinding modes of workpieces made of BT22 

Form and dimen-
sions of HPW, mm 

Technological parameters 

vw, m/s sl, m/min  t, mm z, mm 
sc(ij) 

ij Quantity 

1А1 200×20×76×5 
(GOST 53923–

2010) 
28 6 0.01 0.10 

10 
21 
22 

2 mm/stroke 
4 mm/double-stroke 
4 mm/double-stroke 

Note: vw – cutting speed, sl – longitude feed, t – cutting depth, z – operating allowance, sc(ij ) – cross-
feed 

 
Variable grinding conditions (ij ) in table 1 provide the following information. Index i = 1; 2 charac-

terizes representation sc(ij ). Both schemes have equal performance of metal removal. Second grinding 
variable j = 0;2���� describes the verities of HPW cutting-in and descending of the grinding wheelhead to 
cutting depth t: 1 – up, 2 – down, 0 – up and down cutting-in change at each stroke. 

In order to evaluate the quality of machine parts, the following parameters are used: surface rough-
ness (Ra1, Rmax1 – in the direction of vector sc; Sm2 – in the direction of sl); flatness deviations EFEmax, 
EFEa, EFEq, which are named as the greatest, the arithmetical mean and quadratic mean; microhard-
ness HV taking into account the stability of their formation. 

Considering the volatility and the stochastic nature of the grinding process, interpretation of the ob-
servations is made with help of statistical approaches, considering them as random qualities (RQ). In 
the experiment, they are generally represented by the sets: 

�yijv�, i = 1; 2, j = 0; 2�����, v = 1; 30������.     (1) 

Methods of interpretation of experimental data using statistical methods are given in the works [9, 
10]. These methods are divided into two groups: parametric and non-parametric (in particular the rank 
one). Involving the parametric method is possible if (1) satisfies two conditions: homoscedasticity 
(uniformity or homogeneity of dispersions) and normality of distributions. Under grinding conditions, 
these restrictions of RQ (1) are often violated in one way or another. In such situation, it is better to 
make use of nonparametric statistics, which does not depend on families of distributions and does not 
use their properties. The following one-dimensional distributions of frequencies are used for the eval-
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uation of RQ: for parametric method – average y�ij  = �ij • , standards of deviations (SD)ij , ranges Rij  = 

�ymax – ymin�
ij
; for rank statistics - medians y�ij , quartile latitude QLij = �y0.75 – y0.25�ij

, covering 50% of 

observations (1). 
Methods of ANN implementation are presented in work [8]. However, in this case, the type of 

analysis is regression, which allows obtaining a numeric estimate that is convenient in the analysis. 

3.. Results and discussion 
To choose the method of statistical analysis of (1), methods were tested to ensure the homogeneity of 
dispersions and normality of distributions. Positive test results are reflected as the acceptance of the 
null hypotheses (Ho) and their reject - as alternative hypothesis (H1). Theoretical statistics imposes the 
most strict requirements for dispersion homogeneity at the assumed level of significance α = 0.05. 
Taking into account the statistical nature of the decisions, three groups of criteria are involved in the 
program Statistica ω = 1;3����: 1 – Hartley’s, Cochran’s, Bartlett’s (they are represented in the program 
by a single set); 2 – Levene’s; 3 – Brown-Forsythe’s. Acceptance conditions of their homogeneous 
and the test results are presented in table 2. 
 

Table 2. Test of dispersion homogeneity for the studied parameters of the workpieces’ 
surface quality 

Parameter 
Expected confidence level �ω < 0,05 for criteria ω = 1;3���� 

Acceptation of Hо 1 2 3 
Ra1 0.42 0.48 0.49 - 

Rmax1 0.53 0.23 0.29 - 
Sm2 0.00 0.01 0.08 + 

EFEmax 0.00 0.00 0.00 + 
EFEa 0.00 0.00 0.00 + 
EFEq 0.00 0.00 0.00 + 
HV 0.047 0.049 0.053 + 

Note: ω = 1;3����: 1 – Hartley’s, Cochran's and Bartlett’s; 2 – Levene’s; 3 – Brown–Forsythe’s, sign 
«+» – Hо is accepted, sign «-» – Hо is rejected 

 
Hо indicators were taken for 5 of the 7 parameters concerning dispersion homogeneity of observa-

tions (table 2) and it was rejected - for Ra1 and Rmax1. 
 

Table 3. Distribution normality testing (1) 

ij  Expected confidence level αij  
Ra1ij Rmax1ij Sm2ij EFEmaxij EFEaij EFEqij HVij 

10 0.66 0.005 0.005 0.02 0.11 0.06 0.49 
21 0.84 0.41 0.03 0.01 0.58 0.49 0.62 
22 0.59 0.51 0.001 0.15 0.14 0.22 0.98 

 
Normality of distributions (1) was verified by the Shapiro-Wilk’s criterion in table 3, provided that 
�ij  ≥ 0,5. It was revealed that indicators Hо  have been rejected in most cases, which confirms the in-
complete provision of requirements from parametric statistics. This forced us to turn to a nonparamet-
ric method using medians y�ij  (measures of position) and quartile latitude QLij (measures of dispersion), 

the values of which are presented in table 4. 
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Table 4. Effect of cross-feed specifying scheme and method of wheel cutting-in on  
quality of grinding workpieces 

ij 

Parameter 
Ra1ij, µm Rmax1ij, µm Sm2ij, µm EFEmaxij, µm EFEaij, µm EFEqij, µm HVij, MPa 
y�ij  КШij  y�ij  КШij  y�ij  КШij  y�ij  КШij  y�ij  КШij  y�ij  КШij  y�ij  КШij  

10 
0.31 

(0.32) 
0.06 1.8 0.3 

94.34 
(100) 

33.26 
6.0 

(TFE5) 
3.0 3.54 1.33 3.84 1.59 2887.6 278.5 

21 
0.47 

(0.50) 
0.08 2.68 0.58 

87.68 
(100) 

26.08 
4.0 

(TFE4) 
1.0 2.67 0.67 2.8 0.42 3518.7 264.6 

22 
0.47 

(0.50) 
0.09 2.81 0.62 

99.98 
(100) 

36.13 
8.0 

(TFE6) 
3.0 5.38 2.67 5.65 2.36 3598.7 368.9 

Note: there are QL in the brackets (GOST 2789–73), for roughness parameters, for flatness devia-
tions - TFE (GOST 24643-81); ij – see the experimental method 

 
According to the table, mode ij  = 10 provides a reduction of high-rise parameters of a roughness 

not only for experienced medians, but also for the stability of their formation compared to modes ij  = 
21; 22: median R	a111 = 0.31 µm was predicted less than its analogues (R	a121 = R	a122 = 0.47 µm) 1.52 
times, QLRa111 = 0.3 µm – up to 2.07 times (QLRa121 = 0.58 µm, QLRa122 = 0.62 µm). For Sm2ij, EFEmaxij, 
EFEaij, EFEqij, the best result was predicted for the second scheme - ij  = 21, and mixed results were 
predicted for HVij – HV� ij  and QLHVij. This fact excludes the possibility to give an overall assessment of 
all the parameters of the surface quality of polished workpieces by conventional statistical analysis 
methods. The ANN model was used in the package «STATISTICA Neural Network» to select the op-
timal method of cross-feed and wheel cutting-in under surface grinding of titanium workpieces.  
Initially the Ann model search was carried out separately for surface roughness, for accuracy and for 
micro-hardness, by which differential estimation was predicted numerically. Then the overall estimate 
is the sum of the differential estimates. 

For input variables, there are three levels of estimates during searching: low, average and high (ta-
ble 5), and for output – 5 levels: 5 - is very good, 4 – good, 3 – average, 2 – poor and 1 – very poor. 
 

Table 5. Linguistic input variables and their ranges for roughness parameters 

Input parameters 
Level of factors, µm Parameter Linguistic variables 

Ra1ij y�ij  low (Н), average (С), high (В) 0.31; 0.39; 0.47 

QLij low (Н), average (С), high (В) 0.06; 0.075; 0.09 

Rmax1ij y�ij  low (Н), average (С), high (В) 1.80; 2.305; 2.81 

QLij low (Н), average (С), high (В) 0.30; 0.46; 0.62 

Sm2ij y�ij  low (Н), average (С), high (В) 87.68; 93.83; 99.98 

QLij low (Н), average (С), high (В) 26.08; 31.105; 36.13 

 
The total number of rules used to build the neural networks is equal to 36 = 729 possible combina-

tions of input parameters and linguistic estimates of grinded part qualities (table 6). Different ANN 
models with varied architectures were obtained as a result of the prediction, among which the model 
of multilayer perceptron MLP 6-9-1 type was selected. It had a three-layer structure: an input layer (of 
6 neurons), one hidden layer (of 9 neurons) and an output layer (of 1 neuron). This model provides the 
fastest performance and the smallest error for all three subsets: teaching, checking and testing. 
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Table 6. The structure of linguistic simulation rules 

№ 

Structure of rules 

Estimation  Ra1ij Rmax1ij Sm2ij 

y�ij  QLij  y�ij  QLij  y�ij  QLij  

1 L L L L L L 5 
2 L L L L L A 5 
3 L L L L L H 4 
… … … … … … … … 
727 H H H H H L 2 
728 H H H H H A 1 
729 H H H H H H 1 
 
Search of the ANN model for form accuracy parameters, taking into account the stability of their 

formation carried out similarly, and as a result the MLP 6-5-1 model was obtained. 
 

Table 7. Structure of rules for ANN training in microhardness 

№ 
HVij, MPa Numerical 

estimation  ��ij  QLij  

1 3598.74 264.60 5 

2 3598.74 316.75 4 

3 3598.74 368.90 3 

4 3243.19 264.60 4 

5 3243.19 316.75 3 

6 3243.19 368.90 2 

7 2887.63 264.60 3 

8 2887.63 316.75 2 

9 2887.63 368.90 1 
 
The structure combinations for microhardness estimations are shown in table 7. In this case, the 2-

5-1 MLP model is selected. 
 

Table 8. Estimation of technological grinding methods by quality parameter parts 
of workpieces 

ij  
Differential estimate on 

Integral estimation 
Roughness  Form accuracy  Microhardness  

10 3.95 3.06 2.41 9.42 

21 3.2 5.0 3.96 12.16 

22 1.0 1.0 3.24 5.24 
 
Differential estimates (table 8) were obtained as a result of predictions based on ANN models. It 

has been established that for surface roughness of grinded parts, first technological method ij = 10 
(cross feed per stroke and HPW cutting-in change alternately from up to down) with a numeric estima-
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tion of 3.95 (good) has proven to be the most effective. The second place was taken by second grind-
ing option ij  = 21 (cross feed per double stroke with upward HPW cutting-in at the working stroke). 
However, the second variant with the appropriate estimates of 5.00 (very good) and 3.96 (good) was 
the best for form accuracy and microhardness of the surface layer. 

In case of integral estimation of all studied parameters of surface qualities (roughness, form accu-
racy, micro-hardness) with allowance for stability of the formation, the following results were ob-
tained. The second grinding variant had the best estimate (12.16) and the worst was given to the third 
one with a numeric estimate of 5.24 and with a very bad estimate for roughness and form accuracy. 

Hereby, in the case of surface grinding of titanium workpieces of alloy VT22, the cross-feed speci-
fying sc at a double strоke during the upward grinding wheel, cutting-in at the working stroke, turned 
out the most effective technique. 

4.  Conclusions 
The test results of the experimental data for homogeneity of dispersions and normality of distributions 
have shown the expediency of application of the nonparametric method for their interpretation. The 
neural network models have demonstrated effectiveness in solving the problem of complex evaluation 
of experimental data. 

It was established that in order to improve the quality of the titanium workpieces surface, surface 
grinding should be conducted when specifying cross-feed sc at a double-stroke during the upward 
grinding wheel cutting-in at the working stroke. 
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