MEACS 2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 327 (2018) 042123 doi:10.1088/1757-899X/327/4/042123

Technological capabilities of increasing surface quality of
wor kpieces made of titanium alloy VT 22 and stability of
surface grinding

Yal Soler!, V M Salov?, D SMai®

Irkutsk National Research Technical University, B8rmontov St., Irkutsk, 664074,
Russia

E-mail: 'solera@istu.irk.riésalov@istu.edimdsmmO07 @gmail.com

Abstract. Surface grinding of flat workpieces made of alMy22 was conducted by the pe-
riphery of a highly porous wheel (HPW) from cubigrbn nitride CBN30 B107 100 OV K27
KF40 with three processing techniqué$. (They are 10 - cross-feed per stroke, HPW cutting
into a workpiece changes alternately from up tomiol? — cross-feed per double stroke during
the up HPW cutting-in at the working stroke; 22 ress-feed per double stroke during the
down HPW cutting-in at the working stroke. With tineolvement of artificial neural network
models, it was revealed that to improve the quaditgurfaces and stability of its formation,
grinding should be conductedijif= 12.

1. Introduction

It is known that one of the final methods of medbalnprocessing is grinding, ensuring high precisio
(6-10 tolerance degrees) and a small surface rasghR, = 0.32 + 2.5 um) at a sufficiently high per-
formance and low cost of commercial products. Hilisws the grinding operation to be widely used
for the manufacture of high quality critical pasfsaircrafts, including titanium alloy parts [1].

Titanium alloys belong to hard-to-machine materiglst all brands of titanium alloys, especially
high strength dsyengih imt > 1000 MPa), have low workability by traditionabrasive tools
(electrocorundum, silicon carbide) of standard pityo (6-7)th structures. The reasons for their low
grinding ability are adhesion and diffusion intérac between the abrasive and the material being
treated, as well as the intense loading of the ingrkurface of an abrasive tool [2, 3]. Highly paso
wheels (HPW) made of cubic boron nitride were dewetl for their grinding; sizes of pores in these
wheels are much larger than in the standard orfes. gfromotes better chip disposal, reduces wheels
loading rate and improves the conditions of grigdione cooling [4].

Another way to improve the grinding process ofniian alloy is the choice of specifying methods
of cross-feed and wheel cutting-in into a workpigdevertheless, there is a problem with the integra
ed assessment of a large number of parametersrikpiwoes’ surface quality, which must be simulta-
neously provided to ensure each of the requiredatip@al properties. The surface topography is es-
timated by measures of position and dispersio®][5The last one plays an important role, espsaciall
in a flexible automated production, as it holds phecess output parameters at a constant leveigluri
the entire operation time. A large number of thel&d variables lead to difficulty in complex evalu
tion of conventional statistical methods. Modelsdfficial neural networks (ANN) have a number of
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valuable properties that make them suitable foreting complex, non-stationary processes that de-
pend on many input variables [7, 8]. First, to 8wl model of the ANN process does not require ana-
lytical expressions that reflect the physical phmapa of the process. The ANN model is built auto-
matically through a teaching procedure, based famriration about the process. Second, ANN models
are able to process information simultaneously fdifferent sensors and physical quantities, which
must not necessarily be correlated. Thirdly, theNANodels can be effectively combined with physi-
cal models to further improve simulation performanBecause of these properties, ANN models are
considered as an effective tool for modeling ohdimg processes. Using the ANN models, multiple
tasks of classification and regression analysisraialy solved.

The aim of this study is to evaluate specifying hoels of cross-feed and cutting-in of HPW
CBN30 B107 100 OV K2KF40 into a workpiece made of titanium alloy VT22duality of its sur-
face and process stability using ANN.

2.. Methodology of the experiment

The subject of the research is workpieces of tanialloy VT22 with dimensiondxBxH =
40%x40x40 mm, processed by machine model 3E711ByghtamelxB without sparking-out at the
end of the cycle; the flooded coolant is the 5% lsian “Akwol-6" (TU 0258-024-00148845-98)
with a 7-10 I/min flow. The number of parallel obgtions isn = 30. The form and dimensions of the
HPW and grinding modes are given in table 1.

Table 1. Abrasive tool and grinding modes of workpieces enafiBT22

Technological parameters

Form and dimen-

sions of HPW, mm v, m/s s, m/min t, mm Z, mm — 0 -
ij Quantity
1A1 200x20x76%5 10 2 mm/stroke
(GOST 53923 28 6 0.01 0.10 21 4 mm/double-stroke
2010) 22 4 mm/double-stroke

Note:v,, — cutting speed; — longitude feed, — cutting depthz — operating allowance, — cross-
feed

Variable grinding conditiongj{ in table 1 provide the following information. lexi = 1; 2 charac-
terizes representatiaj. Both schemes have equal performance of metalvam&econd grinding
variablej = 0,2 describes the verities of HPW cutting-in and dede®y of the grinding wheelhead to
cutting deptft: 1 — up, 2 — down, 0 — up and down cutting-in gfeaat each stroke.

In order to evaluate the quality of machine pafts,following parameters are used: surface rough-
ness Ra, Rnax — iN the direction of vecta; S, — in the direction 08); flathess deviationEFE.
EFE. EFE, which are named as the greatest, the arithmeatieah and quadratic mean; microhard-
nessHV taking into account the stability of their formatio

Considering the volatility and the stochastic natof the grinding process, interpretation of the ob
servations is made with help of statistical apphesa¢ considering them as random qualities (RQ). In
the experiment, they are generally representetidogéts:

{yijv}, i=1;2j=02 v=T 30 1)

Methods of interpretation of experimental data gstatistical methods are given in the works [9,
10]. These methods are divided into two groupsametric and non-parametric (in particular the rank
one). Involving the parametric method is possilbl€l) satisfies two conditions: homoscedasticity
(uniformity or homogeneity of dispersions) and nality of distributions. Under grinding conditions,
these restrictions of RQ (1) are often violatedime way or another. In such situation, it is betiber
make use of nonparametric statistics, which do¢slepend on families of distributions and does not
use their properties. The following one-dimensiaiatributions of frequencies are used for the eval
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uation ofRQ for parametric method — average= yj. , standards of deviation§ID)ij, rangesR; =
|ymax—ymin|ij; for rank statistics - mediaiyg, quartile latitudeQL; = |y0.75—y0'25|ij, covering 50% of

observations (1).
Methods of ANN implementation are presented in wi@k However, in this case, the type of
analysis is regression, which allows obtaining merc estimate that is convenient in the analysis.

3.. Results and discussion

To choose the method of statistical analysis of ifigthods were tested to ensure the homogeneity of
dispersions and normality of distributions. Positiest results are reflected as the acceptandeeof t
null hypothesesH,) and their reject - as alternative hypothebig.(Theoretical statistics imposes the
most strict requirements for dispersion homogenaityhe assumed level of significange= 0.05.
Taking into account the statistical nature of tleeisions, three groups of criteria are involvedhe
programStatisticaw = 1,3: 1 — Hartley’s, Cochran’s, Bartlett’s (they ar@mesented in the program
by a single set); 2 — Levene’s; 3 — Brown-Forsyghécceptance conditions of their homogeneous
and the test results are presented in table 2.

Table 2. Test of dispersion homogeneity for the studiecpeters of the workpieces’
surface quality

Expected confidence leve], < 0,05 for criterian = 1;3

Parameter 1 5 3 Acceptation oH,

Ra 0.42 0.48 0.49 -

Rimax 0.53 0.23 0.29 -
S 0.00 0.01 0.08 +
EFEmax 0.00 0.00 0.00 +
EFE 0.00 0.00 0.00 +
EFE, 0.00 0.00 0.00 +
HV 0.047 0.049 0.053 +

Note: w = 1,3: 1 — Hartley’s, Cochran's and Bartlett’s; 2 — Les's; 3 — Brown—Forsythe’s, sign
«+» —H_ is accepted, sign «-»H; is rejected

H, indicators were taken for 5 of the 7 parameterseming dispersion homogeneity of observa-
tions (table 2) and it was rejected - Rt andRyax-

Table 3. Distribution normality testing (1)

Expected confidence leve}

i

Raij Rmawi S EFEmaxi EFE EFE; HV;
10 0.66 0.005 0.005 0.02 0.11 0.06 0.49
21 084 041 0.03 001 058 0.49 0.62
22 059 051 0.001 0.15 0.14 022 098

Normality of distributions (1) was verified by tt&hapiro-Wilk’s criterion in table 3, provided that
a; > 0,5. It was revealed that indicatdig have been rejected in most cases, which confin@sn:

complete provision of requirements from paramedtatistics. This forced us to turn to a nonparamet-
ric method using mediari'ﬁ (measures of position) and quartile latit@le; (measures of dispersion),

the values of which are presented in table 4.
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Table 4. Effect of cross-feed specifying scheme and metiadheel cutting-in on
quality of grinding workpieces

Parameter
ij Razij UM Ryagij, KM Sy, UM EFEqaq UM EFEy;, pm EFEg, pm  HV;, MPa

Y, Kuy ¥ KUy Y KUy Y, KO Y, KO Y KO Y K
0.31 94.34 6.0

10 (0.32) 0.06 18 0.3 (100) 33'26(TFE5) 3.0 354 1.33 3.84 1.59 2887.6 278.5
0.47 87.68 4.0

21 (0.50) 0.08 2.68 0.58 (100) 26.08 (TFE4) 1.0 2.67 0.67 2.8 0.42 3518.7 264.6
0.47 99.98 8.0

22 (0.50) 0.09 281 0.62 (100) 36.13 (TFES) 3.0 5.38 2.67 5.65 2.36 3598.7 368.9

Note: there are QL in the brackets (GOST 2789-t8)roughness parameters, for flatness devia-
tions -TFE (GOST 24643-81)j — see the experimental method

According to the table, modg = 10 provides a reduction of high-rise parametéra roughness
not only for experienced medians, but also fordtadility of their formation compared to modps
21; 22: mediaR,;1; = 0.31 pm was predicted less than its analogRgs; = Ra12o = 0.47 um) 1.52
times,QLra11 = 0.3 pm — up to 2.07 timeQra21 = 0.58 UMQLgaz, = 0.62 pm). FOB.gj, EFEnaxi
EFEy;, EFE;;, the best result was predicted for the secondnsehgj] = 21, and mixed results were
predicted forHV;; _m/ij andQLyy;. This fact excludes the possibility to give anmaeassessment of
all the parameters of the surface quality of p@dshvorkpieces by conventional statistical analysis
methods. The ANN model was used in the pack&BATISTICANeural Networksto select the op-
timal method of cross-feed and wheel cutting-inemslirface grinding of titanium workpieces.
Initially the Ann model search was carried out safmy for surface roughness, for accuracy and for
micro-hardness, by which differential estimationsvpsedicted numerically. Then the overall estimate
is the sum of the differential estimates.

For input variables, there are three levels ohesties during searching: low, average and high (ta-
ble 5), and for output — 5 levels: 5 - is very goéd- good, 3 — average, 2 — poor and 1 — very.poor

Table5. Linguistic input variables and their ranges fangbness parameters

Input parameters

Level of factorsum

Parameter Linguistic variables

R ¥ low (H), average(), high B) 0.31: 0.39; 0.47
QL low (H), average(), high B) 0.06; 0.075; 0.09

Riaxii ¥ low (H), average(), high B) 1.80; 2.305; 2.81
QL;; low (H), average(), high B) 0.30; 0.46; 0.62

Srei ¥ low (H), average(), high B) 87.68; 93.83; 99.98
QL; low (H), average(), high B) 26.08; 31.105; 36.13

The total number of rules used to build the nenedorks is equal t0®3= 729 possible combina-
tions of input parameters and linguistic estimaiegrinded part qualities (table 6). Different ANN
models with varied architectures were obtained eesalt of the prediction, among which the model
of multilayer perceptron MLP 6-9-1 type was seldclehad a three-layer structure: an input layér (
6 neurons), one hidden layer (of 9 neurons) anougput layer (of 1 neuron). This model provides the
fastest performance and the smallest error fahedle subsets: teaching, checking and testing.
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Table 6. The structure of linguistic simulation rules

Structure of rules

Ne Raij Rmaxii Srei Estimation
Yi QL; Y QL; Yi QL
1 L L L L L L 5
2 L L L L L A 5
3 L L L L L H 4
727 H H H H H L 2
728 H H H H H A 1
729 H H H H H H 1

Search of the ANN model for form accuracy paranseteking into account the stability of their
formation carried out similarly, and as a resuét MiLP 6-5-1 model was obtained.

Table 7. Structure of rules for ANN training in microhardse

No HV;, MPa Numerical
- Fi QL estimation
1 3598.74 264.60 5

2 3598.74 316.75 4

3 3598.74 368.90 3

4 3243.19 264.60 4

5 3243.19 316.75 3

6 3243.19 368.90 2

7 2887.63 264.60 3

8 2887.63 316.75 2

9 2887.63 368.90 1

The structure combinations for microhardness esioms are shown in table 7. In this case, the 2-
5-1 MLP model is selected.

Table 8. Estimation of technological grinding methods bwlity parameter parts
of workpieces

Differential estimate on

ij . Integral estimation
Roughness Form accuracy Microhardness

10 3.95 3.06 2.41 9.42

21 3.2 5.0 3.96 12.16

22 1.0 1.0 3.24 5.24

Differential estimates (table 8) were obtained assalt of predictions based on ANN models. It
has been established that for surface roughnegsirafed parts, first technological methgd= 10
(cross feed per stroke and HPW cutting-in changgradtely from up to down) with a numeric estima-
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tion of 3.95 (good) has proven to be the most &ffecThe second place was taken by second grind-
ing optionij = 21 (cross feed per double stroke with upward HEting-in at the working stroke).
However, the second variant with the appropriaténeses of 5.00 (very good) and 3.96 (good) was
the best for form accuracy and microhardness ostinface layer.

In case of integral estimation of all studied pagtars of surface qualities (roughness, form accu-
racy, micro-hardness) with allowance for stabilitythe formation, the following results were ob-
tained. The second grinding variant had the beshate (12.16) and the worst was given to the third
one with a numeric estimate of 5.24 and with a @&y estimate for roughness and form accuracy.

Hereby, in the case of surface grinding of titaniwmorkpieces of alloy VT22, the cross-feed speci-
fying s at a double stke during the upward grinding wheel, cutting-intta¢ working stroke, turned
out the most effective technique.

4. Conclusions
The test results of the experimental data for hamedy of dispersions and normality of distribugon
have shown the expediency of application of thepacmmetric method for their interpretation. The
neural network models have demonstrated effectaseiresolving the problem of complex evaluation
of experimental data.

It was established that in order to improve theliguaf the titanium workpieces surface, surface
grinding should be conducted when specifying cfessts, at a double-stroke during the upward
grinding wheel cutting-in at the working stroke.
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