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Abstract. In this paper, the authors describe the transitions from the regular periodic mode to 
quasiperiodicity that can be observed in a multilevel pulse-width modulated control system for 
a high-power heating unit. The behavior of such system can be described by a set of two 
coupled non-autonomous differential equations with discontinuous right-hand sides. The 
authors reduce the investigation of this system to the studying of a two-dimensional piecewise-
smooth map. The authors demonstrate how a closed invariant curve associated with 
quasiperiodic dynamics can arise from a stable periodic motion through a border-collision 
bifurcation. The paper also considers a variety of interesting nonlinear phenomena, including 
phase-locking modes, the coexistence of several stable closed invariant curves, embedded one 
into the other and with their basins of attraction separated by intervening repelling closed 
curves. 

1.  Introduction 
The required temperature regulation is one of the crucial tasks in many heat technology processes, 
such as ceramics, glass and glass blocks production, crystal growing and others, as even the slight 
deviation from the required temperature disrupts the necessary parameters of the technological process 
and deteriorates the finished product quality. 

For example, when growing a synthetic sapphire crystal, it is necessary to provide the temperature 
change pattern in the crucible from 25◦C to 2050◦C with a certain degree of its increase and decrease, 
which implies the application of the automated control system with the function of the software setting 
of the temperature variation in the crucible with the required accuracy. 

Research activities with a commercial heating unit imply certain technological and structural 
complexities, so an experimental heating unit was designed in order to test and study the control 
actions; the layout of the unit is presented in Fig. 1 [1, 2]. 
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Figure 1. Schematic diagram of heating unit 

 
The heating unit consists of the following areas: internal furnace space 1, filled with air or gas; 

nichrome electric heater 2, uniformly located in the inner layer of lining 3, made of magnesite bricks, 
and the outer layer of lining 4, made of the mineral wool in a cylindrical beaker made of galvanized 
steel (fig. 1). The geometric shape of the furnace is a bounded cylinder with the lining on its top and 
bottom. 

The heat exchange processes in the heating and lined areas take place due to heat conductivity, 
hardness and opacity of substances, of which they are made. In the internal space of the unit, the heat 
transfer process is conditioned by the convective and conductive components. The confined internal 
space of the heating object contains either the heated material or air. In view of this, it can be affirmed 
that the convection processes are not so intensive in the internal space so the convective component 
can be excluded. The heat exchange processes in each area are determined with heat conductivity 
equations. 

To solve the synthesis problem of the control law, taking into account the peculiarities of heat 
exchange processes, the transfer function of a heating unit has been experimentally determined [2]: 
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where K, T1, T2 – the transfer factor and the time constants of an object, respectively. 
The currently used temperature regulators with thyristor electric energy converters distort 

considerably the input current curve shape, which results in the appearance of non–sinusoidal modes 
in the supply network. 

On the other hand, the tendency of heating units’ power augmentation for many heat technology 
processes requires creating high-power controlled power sources. One of the ways to solve this 
problem is using the multilevel principle of electrical energy conversion [3]. 

Nowadays the multilevel modulation systems are extensively used in energy-intensive 
technological processes [3]. At the appropriate switching frequency of semiconductor switches and the 
required number of areas, the arbitrarily small pulsation factor and the high accuracy of control signal 
reproduction can be achieved. 

At the same time, implementation of multilevel modulation systems’ advantages is a complicated 
problem. It stems from the fact that parameter variations in pulse systems can result in under-
frequency oscillations, multiple of the modulation frequency, and quasiperiodic or chaotic modes. The 
most dangerous of these effects are rigid transitions, when discontinuous changes of dynamics occur 
against the periodic dynamics as a result of slight parameter alterations or random disturbances. This 
causes not only reduction of the control quality performance and process flow disruption, but also 
abrupt failures of technological equipment. 



3

1234567890‘’“”

MEACS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 327 (2018) 052014 doi:10.1088/1757-899X/327/5/052014

 
 
 
 
 
 

2.  Mathematical model 
The motion equation of a heating unit control system, the continuous linear part of which is described 
with the transfer function (1), is as follows: 

                                              ( ) ( )
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d T dT
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dt dt
ξ+ + + = Γ⋅ Κ ,                                              (2) 

where T – temperature in a heating unit; T1, T2 – time constants; K UΓ = ⋅ , where U – supply voltage, 
K – transfer factor of the continuous linear part; ξ, KF(ξ) – the input and output signals of the 
modulator, respectively. The article considers a system, based on the pulse-width modulation of the 
first kind (PWM-1). 

Let us introduce notations x1 = T, x2 = dT/dt and rewrite equation (2) in matrix representation: 
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where a – modulation period, ⌊·⌋ — function, which singles out the argument’s integral part, Vref– the 
heating unit’s temperature setting signal, β – the transfer factor of a temperature sensor, α – 
amplification factor; V0 – reference signal of a modulator; N – number of modulator’s areas. 

Parameters: 
T1T2 = 10240 c; T1 + T2 = 352 c; K = 328,7 ◦C/B; a = 10 c; 2<U<24 B; β = 0,01 B/◦C; V0 = 5 B; 
Vref = 5 B; 0α >  

The mathematical model (3) can be reduced to a simpler form [4]: 
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Here λ1 = −1/T1, λ2 = −1/T2 − eigenvalues of matrix A and 
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The dynamic system (4) has been reduced to a two-dimension map [4]: 
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where k kz t a k= −  − pulse duty factor 0 1kz≤ ≤  and 1 ks N≤ ≤ . 
Variables sk and zk are determined: 
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3.  Bifurcation analysis 
In general, case period T of the periodic motion of the dynamic system (3) is multiple of modulation 
period a: T = m a, m = 1, 2, . . . . Let us refer to the motion with such period as m-cycle or the cycle of 
m period. 

For bifurcation analysis, supply voltage U and amplification factor α were taken as varying 
parameters. In Fig. 2 a one-parameter bifurcation diagram, calculated for 33,0α = with the alteration 
of the supply voltage U, is presented. 

At low values of U there is only a single stable 1-cycle in the phase field of a dynamic system (3). 
When increasing the supply voltage, the stable 1-cycle undergoes the so-called «border-collision 
bifurсation» [4-8] in point U1. As a result, the 1-cycle disappears and is smoothly replaced with an 
unstable 1-cycle of another type with a pair of complex conjugate multipliers (unstable focus), 
surrounded with a stable closed invariant curve. 

As it is known, the motion pattern on a closed invariant curve depends on the rotation number; if it 
is irrational, the invariant curve is densely filled with points of the map and the dynamics becomes 
quasiperiodic. When the rotation number is rational, the invariant curve has an even number of 
periodic orbits, half of which are stable and the others are saddle, and the invariant curve itself is 
composed of the unstable manifolds of saddle cycles. 

 
Figure 2. Bifurcation diagram, illustrating the generation of coexisting closed invariant curves 

 
The increase of the supply voltage results in the dynamics complication due to the appearance of 

multistable behavior areas. 
In area 1, there are two coexisting stable 8-cycles (see Fig. 2). The first stable 8-cycle I, belonging 

to main branch A, appears through the saddle-node bifurcation together with saddle 8-cycle. In the 
resonant dynamics area the closed invariant curve is composed of unstable manifolds of the saddle 8-
cycle. 

The second pair of 8-cycles (the stable II and the saddle one) appears hard through the «border-
collision», for example, in point U2. The border of the basins of attraction of the coexisting attractors 
is represented with stable manifolds of a saddle 8-cycle. 
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A special type of multistablilty has been identified, when several stable closed invariant curves, 
embedded one into another and having periodic or quasiperiodic dynamics, coexist in the phase space. 
It has been demonstrated in the work [9] that it is a typical situation for multilevel modulation systems. 
In the bifurcation diagram, the area of the coexistance U4 < U < U5 of two stable closed invariant 
curves is denoted with 2. The coexisting attractors’ basins of attraction are separated with an unstable 
closed invariant curve. It should be pointed out that it is true only for two-dimensional maps (in 
multidimensional systems the basins of attraction are separated with stable manifolds of a saddle 
closed invariant curve). 

4.  Conclusion 
In this paper the authors present the bifurcation analysis findings of a multilevel modulation control 
system for a heating unit. The behavior of such system can be described by a two-dimension set of two 
coupled nonautonomous differential equations with discontinuous right-hand sides. The research of 
this system can be reduced to studying the properties of a two-dimensional piecewise-smooth map. 

It has been found out that at low values of supply voltage, the system demonstrates quasiperiodic 
behaviour, which arises through the border-collision bifurсation. At the high values of amplification 
factor and supply voltage, the pronounced multistablilty is observed. A special type of multistablilty 
has been identified, when several stable closed invariant curves, embedded one into another and 
having periodic or quasiperiodic dynamics, coexist in the phase space. The presented findings are only 
a first step in understanding complicated nonlinear phenomena in technological processes of 
controlled heating units. The further development of this research involves the creation of a 
comprehensive theory of designing a wide variety of heating units, based on up-to-date methods of 
nonlinear dynamics. 
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