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Abstract. Most existing Collaborative Filtering (CF) algorithms predict a rating as the pref-

erence of an active user toward a given item, which is always a decimal fraction. Meanwhile, 

the actual ratings in most data sets are integers. In this paper, we discuss and demonstrate why 

rounding can bring different influences to these two metrics; prove that rounding is necessary 

in post-processing of the predicted ratings, eliminate of model prediction bias, improving the 

accuracy of the prediction. In addition, we also propose two new rounding approaches based 

on the predicted rating probability distribution, which can be used to round the predicted rating 

to an optimal integer rating, and get better prediction accuracy compared to the Basic 

Rounding approach. Extensive experiments on different data sets validate the correctness of 

our analysis and the effectiveness of our proposed rounding approaches. 

1. Introduction 

Collaborative Filtering (CF) systems have attracted lots of research attentions to overcome the 

information overload problem. Many recent algorithms, such as neighborhood methods, matrix 

factorization, various probabilistic models, clustering techniques, graph-based approaches and 

machine learning techniques, based on, e.g., association rule mining [4], have been proposed which 

aimed to improve the accuracy of prediction rating. For evaluation, Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) are widely adopted in many recommendation systems to measure 

the difference between the predicted scores and users’ actual ratings, such as Slope One [8], 

Recommending Based on Rating Frequencies [5] and SVD model [9]. 

In general, CF algorithms output a decimal number as the predicted preference of an active user 

toward a given item. However, the actual ratings in most systems are integers. According to our 

experiment, it is necessary to round the decimal predicted scores to the proper integers, as this not only 

reduces the MAE values, but also improves the precision and quality of recommendation. Few 

preliminary works [3] have observed this fact. However, this issue has not been seriously studied. In 

fact, many recent popular CF algorithms, such as Recommending Based on Rating Frequencies [5], 

get very inspiring accuracy attributed to the fact that the original predicted ratings are integers. 

In this paper, we present a comprehensive study on analyzing and demonstrating how and why 

rounding influences MAE and RMSE values. We show that the nonuniform distributions of ratings in 

training sets bias the predicted scores. Based on our empirical findings, we further propose two 

approaches to round the predicted rating to the most likely integer rating by considering the predicted 

ratings’ probability distribution of each rating level. Extensive experiments show that our proposed 

approaches achieve inspiring performance in MAE metric. 

The rest of this paper is organized as follows. Section 2 briefly reviews some related works. Section 3 

analyzes the influence of rounding on MAE and RMSE, and proves rounding is necessary in 
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postprocessing of the predicted ratings using classical matrix factorization model. The empirical 

process of proof and our proposed rounding approaches are presented in Section 4. Section 5 presents 

the extensive experimental results of our proposed approaches compared to the baseline rounding 

approach. Section 6 concludes this paper and discusses our potential future works. 

2. Related Works 

In most CF algorithms, the rounding of predicted scores has seldom been seriously studied. Thomas 

Hofmann [6] and Rong Jin [7] take the user’s rating trend into account and translate the ratings into 

normalized intervals by employing Gaussian and Decoupling normalization. Both of them avoid the 

issue of rounding the predicted rating to the integer rating. 

A preliminary work [3] has observed that rounding can effectively improve the prediction accuracy 

and reduce the value of MAE. In [3], a rounding algorithm is proposed by considering the users’ trend 

degree, departure degree and judgment degree. However, the computational complexity of this 

algorithm is very high when the rating matrix is very sparse (which usually is the case in most 

recommendation systems) and the number of the prediction rating is very huge. Most importantly, it is 

not illustrated why rounding can improve the precision of predicted ratings and reduce the MAE 

values. 

The basic rounding approach which rounds the predicted rating to the nearest integer is the simplest 

solution for rounding the predicted rating to integer; however, it lacks effective rationale and is 

indemonstrable. In our work, we take it as the baseline rounding approach to validate the effectiveness 

of our proposed approaches.  

In response, in this paper, we analyze and demonstrate how and why rounding predicted ratings to 

integer can influence the performance of the CF algorithms in terms of MAE and RMSE metrics, and 

prove that rounding is necessary in post-processing of the predicted ratings and improving the 

performance and quality of the recommendation. Based on our findings, we further propose two 

approaches to round the predicted rating to the most likely integer rating. Our experiments show that 

the proposed approaches get inspiring performance in MAE metric. 

The three notable contributions of this paper are: 

 First, we analyze and demonstrate why the rounding will bring different influences for MAE 

value and RMSE value, indeed reduce the MAE value, increase the RMSE values in some 

specific context. 

 Second, we prove that rounding is necessary in post-processing of the predicted ratings and 

improving the performance and quality of the recommendation. 

 Third, we propose two rounding approaches based on the predicted ratings’ probability 

distribution of each rating level, which can be used to round the predicted rating to the most 

likely integer rating and offer better performance both in MAE and RMSE metrics. 

3. The Influence of Rounding Prediction 

This section, we demonstrate why and how rounding can affect the performance of recommendation 

systems in terms of MAE and RMSE metrics. A rating   denotes the actual rating given by a user   to 

an item . To distinguish predicted ratings from actual ones, we use the notation   to denote the 

predicted score of user  to item  . The actual ratings are integers lying in  .  

For evaluation and analysis, we use 100k-MovieLens rating database, detailed description of the 

dataset can be seen in Section 5. As CF algorithm, here we employ Matrix Factorization (MF) model 

to analyze the probability distribution of predicted ratings. MF technique has become a popular choice 

for implementing CF and a survey can be found [9]. 

3.1. Evaluation Metrics 

Mean Absolute Error (MAE) and RMSE (Root Mean Square Error) have widely been used in 

evaluating the accuracy of a recommender system, given by: 
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where n̂r means the prediction rating; nr means the true rating in testing data set; N is the number of 

rating prediction pairs between the testing data and prediction result. 

3.2. Performance of Rounding and Analysis 

The Basic Rounding operator is defined as follows: 
 1           

       [1, ]
( )

       [1, ]

           

if  x < 1

x if  x - x 0.5 & x R
BasicRound x

x if  x - x 0.5 & x R

R if  x > R




        
 

       

  

where x    is the floor integer of x (the largest integer less than or equal to x ) and x    is the ceiling 

integer of x  (the least integer greater than or equal to x ). 

As depicted in Fig. 1, the MAE values decrease when we round the predicted rating to the nearest 

neighbor integer with the basic rounding operator. While the RMSE values increase after rounding, 

especially when the training set ratio is larger than 0.5. 
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Fig. 1. Rounding the predicted ratings on MovieLens 

 Reasons Analysis 

In order to demonstrate why MAE values will decrease when predicted ratings, which predicted by 

classical Matrix Factorization model, rounded to integers, we analyzed the data set and all predicted 

ratings. 
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Fig. 2. Actual rating distribution of MovieLens 

Fig. 2 illustrates the distribution of ratings in the training set for 5 different ratings (1~5). As can be 

seen in Fig. 3, the vast majority of the ratings are 3 and 4. In other words, users tend to rate 3 and 4 

more frequently. As the result, the ratings of 3 and 4 have more influence on the final prediction model 

which is learned by all ratings in the training set. 

We conduct experiments on MovieLens with the training set ratio of 0.8 and compute the difference 

between predicted ratings and actual ratings for all training samples. Fig. 3(a) illustrates the 

probability distribution of the prediction errors. Obviously the distribution follows a unimodal 

distribution, with a mode at -0.2. This means that the overall predicted ratings are lower than actual 

ratings by about 0.2. 
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In addition, we satiated the distributions of the prediction errors for 5 different rating levels (1~5) in 

the training set individually. Interestingly, as shown in Fig. 3(b-f), for different rating levels, the 

distributions of the prediction errors are quite different from each other. Indeed, although each 

distribution follows a unimodal distribution, their modes are materially different which range from xx 

to xx. It reflects that most of the modes of these distributions curve are not at the right value (0). One 

of the explanations for this effect is that among the training rating during the MF model learning, the 

majority ratings that used to train the model are rating 3 and rating 4. That cause the predicted ratings, 

which actual ratings is higher than 4, are lower than its actual value. Similarly, the predicted ratings, 

which actual ratings is lower than 3, are higher than its actual value. 
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(a) The distribution of all ratings
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(b) The distribution of rating:1
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(c) The distribution of rating:2
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(d) The distribution of rating:3
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(e) The distribution of rating:4
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(f) The distribution of rating:5  

Fig. 3. Distribution of prediction errors in training set on MovieLens 
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(a) 100k-MovieLens training data set
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(b) 100k-MovieLens testing data set
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Fig. 4. All predicted ratings’ probability distribution 

 

We combine these distributions curve to one Figure as shown in Fig. 4(a). The x-axis represents the 

predicted scores, and the yaxis represents the percentage of the predicted ratings in training set. Fig. 

4(a) shows each distribution of the each rating levels’ predicted ratings in training set. For the actual 

rating of 1, the mode of its distribution is 2.2, which means most of the predicted rating are predicted 

to be around 2.2. This actually results in quite large prediction errors. Similarly, for the actual ratings 

of 2, 3, 4, and 5, the modes of their distributions are 2.9, 3.2, 3.8, and 4.3 respectively.  

For the probability distribution function, we denote by rf   the probability function of the actual ratings 

of predicted ratings belonging to integer r . Naturally, ( )rf x  is the probability of the actual rating of the 

predicted rating x belonging to integer r . 
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According to Fig. 4(a), for a predicted rating x , supposing x   is the nearest integer of x , we 

have 0.5, 0.5x x x           , and  
 

1, ,
( ) max ( )rx

r R
f x f x
   


L . 

In summary, from the above analysis, we can see rounding can definitely decrease the value of MAE. 

It should be noted that we assume the distribution of predicted ratings in test set keeps identical with 

the training set. Fig. 4(b) shows the distribution of predicted ratings on test set. Compared with Fig. 

4(a), we can see the distributions of predicted ratings on test set and training are almost the same. 
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(a) 100k-MovieLens training data set
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(b) 100k-MovieLens testing data set
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Figure 5. All predicted ratings’ probability distribution 

4. Proving and Our Approaches 
In this section, we present the detailed analysis and discussion on the performance of MAE and RMSE 

in the rounding classical MF model. First, we theoretically prove why rounding bring different 

influences for MAE and RMSE. Second, we further propose two new rounding approaches to improve 

the performance of recommendation systems in term of MAE metric. 

4.1. MAE Performance in Rounding Model 

There exist two ways to round the predicted ratings to proper integers with the purpose of decreasing 

the MAE. One way is to round a rating to its neighbor, i.e. rounding a predicted rating x to the floor 

integer x    or the ceiling integer x   . The other way is rounding a rating to the optimal integer. This 

allows a rating to be rounded to any integer, as long as this integer could decrease MAE the most. In 

the following, we discuss these two possible rounding approaches respectively. 

 Rounding to the Neighbor Integers 
Here, we first consider rounding the predicted ratings to their neighbor integers. It should be noted that 

we discuss not a signal predicted rating, but the all predicted rating which has same value. 

Theorem 1: Given a predicted rating x , rounding x  to at most one of its two neighbor integers ( x    or 
x   ) can reduce the value of MAE after rounding. 

Proof: For any predicted rating x , we have [ , ]x x x        . If we round all predicted ratings with the value 

of x  to x   , the decrement of MAE is calculated as follows: 

 
1

1 1

1 1

( ) ( )( ) ( )
( , )

( ) ( )

r x r R
r R r R

r rr r xr rr r
MAE r R r R

r rr r

f x f x x xf x x r f x x r
Dec x x

f x f x

    

    

 

 

                 
  

 
                    (1) 

Similarly, if we round these predicted ratings to x   , the decrement of MAE will be: 

 
1

1

( ) ( )
( , )

( )

r R r x

r rr x r

MAE r R

rr

f x f x x x
Dec x x

f x

   

   





        
 


                                              (2) 

It is important to note that the sign of Equation (1) (2) depends on the sign of 1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  , for 

both ( ) 0x x    and ( ) 0x x    . Hence, only one direction of rounding can reduce the value of MAE. 
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Theorem 2: Given a predicted rating x , only rounding x  to an integer can get the highest decrement of 

MAE compared with other numbers in [ x   , x   ]. 

Proof: According to Equation (1) (2), as the signs of ( , )MAEDec x x   , ( , )MAEDec x x    are all determined by 

the sign of 1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  ,the MAE value could be reduced by modifying the rating in only one 

direction, i.e. either increasing or decreasing x . In other words, if  1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  , to decrease 

the MAE value, we should modify the original predicted rating to a candidate number 0x , 

where 0 ( , )x x x     . Therefore we can get the decrement on MAE value 

 0101 1
0

1 1

( ) ( )( ) ( )
( , )

( ) ( )

r x r R
r R r R

i rr r xr rr r
MAE r R r R

r rr r

f x f x x xf x x r f x x r
Dec x x

f x f x

    

    

 

 

          
  

 
                  (3) 

Obviously, 0( , ) ( , )MAE MAEDec x x Dec x x    . As can be seen in Equation (3), when 0x  is an integer, we get the 

largest decrement of MAE. 

 Rounding to the Optimal Integers 

In Section 4.1.1, we only consider rounding a predicted rating to its neighbor integer. However, 

sometimes this is not the optimal choice. For instance, in Fig. 3(b), for those samples with actual 

ratings of 1, the predicted ratings range from 0 to 5 with a mode of about 2.2. In this case, by only 

rounding the predicted rating to the neighbor integer (which is 2 for most samples) cannot achieve the 

best performance.  

For this purpose, we modify Equation (1) (2) to calculate the decrement of MAE when rounding a 

given predicted rating x  to each integer 0r , after derivation we get Equation (4) as follows: 

      

      
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( )

( , )

( ) ( ) ( ) 2

,  
( )

r r r R i x

r r ir r x i r

r R

rr

MAE
r R r x i r

r r ir r r i x

r R

rr

f x f x x r f x x i r

if r x
f x

Dec x r

f x f x r x f x i x r
if r x

f x

    

     





     

    





       
      


       
     

  



  














                      (4) 

Theorem 3: Rounding a predicted rating to the neighbor integer is not always the optimal rounding 

approach. 

Proof: Here, we take following as an example: given predicted rating: 3.2, and its probability 

distribution of each rating levels are: 

1(3.2) 5 /140f  , 2 (3.2) 4 /140f  , 3(3.2) 3 /140f  , 4 (3.2) 1/140f  , 5(3.2) 1/140f  . According to Equation 

(4), (3.2,3) 2 14MAEDec  , (3.2,2) 6 14MAEDec  , (3.2,1) 2 14MAEDec   we also get: (3.2,4) 8 14MAEDec   ,  
(3.2,5) 20 14MAEDec    and it’s no doubt that we will make the biggest decrement of MAE when we 

round 3.2 to 2, rather than round to 3. Thus, it is necessary to consider rounding the predicted ratings 

to other integers besides its neighbors.  

Assume the optimal rounding integer of predicted rating x  is 0r , and 1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  . We can 

calculate the decrement of MAE as follows: 

      0

0
0 0 01 1 1

( , ) ( ) ( ) ( ) 2 ( )
r r r R i x r R

MAE r r i rr r x i r r
Dec x r f x f x x r f x x i r f x

     

      

        
  
     

   
1 1

( , ) ( ) ( ) ( )
r x r R r R

MAE r r rr r x r
Dec x x f x f x x x f x

    

    
             

Finally, we get the function to judge which integer is the optimal to the predicted rating x , the biggest 

value of  , the optimal integer of the predicted rating x  is. 

     0

0
0 0 01 1

( , ) ( ) ( ) ( ) 2 , 1, ,
r r r R i x

floor r r i 0r r x i r
r x f x f x x r f x x r i   if  r x

    

     

                           L
             (5) 

4.2. RMSE Performance in Rounding Model 

Compared to MAE, RMSE disproportionately penalizes large errors, so that, given a test set with four 

hidden items RMSE would prefer a algorithm that makes an error of 1 on three ratings and 0 on the 
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fourth to one that makes an error of 2 on one rating and 0 on all three others, while MAE would prefer 

the second algorithm, Obviously, it is difficult to strictly define which metric is better to evaluate the 

accuracy of the predicted ratings. 

As shown by Fig. 1, after rounding the predicted ratings, the values of RMSE increase for all rating 

level especially when training set ratio is larger than 0.5. In this section, we discuss the effect on 

RMSE values by rounding the predicted ratings. Similar to Section 4.1, two different rounding 

methods are considered. 

 Rounding to the Neighbor Integers 

First we consider rounding a predicted rating to the neighbor integers. According to our discussion 

above, for any predicted rating x , [ , ]x x x        , if we round all predicted ratings with values of x  to x   , 

the decrement of RMSE will be: 

2 2

1 1 1
( , ) ( ) ( ) ( ) ( ) ( )

r R r R r R

RMSE r r rr r r
Dec x x f x x r f x x r f x

  

  

             
 
                     (6) 

Similarly, if we round these predicted ratings to x   , the decrement of RMSE will be: 

2 2

1 1 1
( , ) ( ) ( ) ( ) ( ) ( )

r R r R r R

RMSE r r rr r r
Dec x x f x x r f x x r f x

  

  

             
 
                       (7) 

As the signs of Equations (6) (7) are determined by the sign of their numerators, the value of RMSE 

may not be reduced by either rounding x to x    or x   . 

 Rounding to the Optimal Integers 

Second, we consider rounding the predicted rating to the optimal integers in order to reduce the value 

of RMSE. According to the formulas above, we calculate the decrement of RMSE when rounding the 

predicted rating to each candidate integer as follows: 

2 2

0 01 1 1
( , ) ( ) ( ) ( ) ( ) ( )

r R r R r R

RMSE r r rr r r
Dec x r f x x r f x r r f x

  

  

       
 
  

 

The sign of 0( , )RMSEDec x r  is determined by the sign of its square root of the numerators. Thus, any 

modification may not reduce RMSE by rounding x  to any integers. 

4.3. Our Proposed Approach: PDPR_Neighbor 

According to Theorems 1 and 2, to decrease the MAE value, we should round a predicted rating to 

either  x    or x   (Note that here we only consider the possible values in [ x   , x   ] ). More specifically, 

we should round the predicted rating x  to the integer x    when 1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  , and to the 

integer x    when 1
( ) ( )

r x r R

r rr r x
f x f x

   

   
  . Based on this finding, we propose our first rounding algorithm 

which only rounds a predicted rating to its floor or ceiling integer, called PDPR_Neighbor, as follows: 

( ) ,

     

 

( )

(1 ( ( ))) (1

[1, ]

( (
( )

))) 2  , 

    ( )[1, ]

Neighbor

Diff x Threshold

x sgn D

BasicRou

iff x x sgn Diff x

Diff x Threshol

nd x

if  x R
PDPR x

if R d x





 

      

 

   

 

  
 

 

1
( ) ( ) ( )

r x r R

r rr r x
Diff x f x f x

   

   
    

1
( ), ( ) 1( ) 0min

r x r R

r rr r x
Threshold f x f x

   

   
    

where ( )sgn x  is sign function, as our rounding approach is under the assumption that the distribution of 

predicted rating in testing set keeps identical with the training set. So here, a threshold is set in our 

approach in order to avoid overfitting. 

4.4. Our Proposed Approach: PDPR_Optimal 

According to the example of Theorem 3’s proof, the optimal integer of a predicted rating (3.2) can be 

determined by Equation (5). Thus, we propose our second algorithm which rounds a predicted rating 

to the optimal integer that makes largest decrement of MAE, called PDPR_Optimal, as follows: 
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    
0

0 0
( )

( )

1

 ( ) , [1, ]

( ) arg max ( , ) ( , )  ,

                             

( ( ) 1 (

[1

( )

, ( )]

Optimal floor ceiling
r PossibleIntsSet x

Diff x Threshold

sgn

BasicRound x if  

Diff x sgn D

x R

PDPR x r x r x

if  

iff x

Diff x Thx R resho





 

 

  

 





 

ld









 

 

 

( ) 0

( ) 0

 1  ,  
( )

 ,  

Dir Z r x if
PossibleIntsSet x

r Z x

ff x

Diff xr R if

      
 

    





 

A threshold is also set to avoid overfitting as our rounding approach is under the assumption that 

the distribution of predicted ratings in testing set must keep identical with the one in training set, while 

the distribution of predicted ratings can’t completely consistent indeed. 

The core part of above two round algorithms (PDPR_Neighbor and PDPR_Optimal) are all the 

calculation of each rating level’s probabilistic distribution. We assume that the distribution of 

predicted ratings for each rating level follows Gaussian distribution. Compared with the algorithm 

PDPR_Neighbor, PDPR_Optimal rounds the predicted rating to the optimal integer in theory. 

5. EXPERIMENT 

Our approaches are tested on two different movie domains. The first one is the 100k-MovieLens rating 

data set with 100,000 ratings by 943 users on 1,682 movies. The ratings are integers ranging from 1 to 

5. The second one is the EachMovie dataset with 2,811,983 numeric ratings by 72,916 users on 1,628 

movies. The ratings range from 0.0 to 1.0 with a step size of 0.2. For EachMovie, we choose 100,118 

ratings by the first 2936 users on 1,628 movies. We multiply all ratings by 5, and then plus one under 

the amplified ratings. Thus, the resulting ratings become integers ranging from 1 to 6. 

5.1.  The Necessity of Rounding Predicted Ratings 

 

We compare the following algorithms with Basic Rounding approach: user-based kNN (using Pearson 

similarity and the neighborhood size of 30 which is suggested as the optimal value in literature [2]), 

Slope One [8], and Classical MF [9]. Besides, we also take the MAE of Rating Frequencies algorithm 

[5] as a reference, which predicted ratings are integers, to evaluate the rounding performance. 
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Fig. 6. The MAE values on MovieLens / EachMovie  
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Fig. 7. The MAE values on two different data sets 

Fig. 6(a), 7(b) shows the MAE values for different training set ratio from 0.1 to 0.9 on the MovieLens 

and EachMovie datasets respectively. As can be seen in Fig. 6(a), 7(b), for all different settings, the 

MAE values are significantly decreased after rounding the predicted ratings by Basic Round approach. 

This proves that rounding the predicted rating can decrease the MAE values for all tested 

recommendation algorithms. In particular, the decrement of MAE values is more inspiring on 

EachMovie data set. 

5.2. The Effectiveness of Our Approaches 
In this section, we conduct a series of experiments to compare the performance of our approach by changing the 

training ratio from 0.2 to 0.9 on MovieLens data set and EachMovie data set. From Fig. 7, it can be observed our 

proposed approaches achieve better performance on different training set ratios. Specifically, the MAE values 

those using our approaches are competitive with Basic Rounding. As large majority of absolute difference 

between original predicted ratings and actual ratings are less than 0.5, there even have not a pinpoint of difference 

between PDPR_Neighbor and PDPR_Optimal, while PDPR_Optimal have a higher robustness under some 

specified context. 

6. Conclusion 

In this work, we demonstrate the reason why rounding can bring different influences for MAE and 

RMSE metrics, and prove that rounding is necessary in post-processing of the predicted ratings and 

improving the performance and quality of the recommendation. Additionally, we also propose two 

rounding approaches based on the predicted ratings’ probability distribution of each rating level, 

which can be used to round the predicted rating to the right integer rating and offer better predict 

accuracy. Extensive experiments on different data sets confirm the correctness of our analysis and 

effectiveness of our proposed approaches.   

In the future, we will reform our rounding approach in order to improve the recall and precision of 

Top-K recommendation. And it is hoped that the rounding of predicted rating presented here will 

prove useful to the CF community as a reference scheme. 
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