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Abstract. A thick hollow FGM sphere with radially varying material property is considered under 
thermal loading. Thermal conductivity is assumed to vary radially following two different power 
functions separately and results for both have been analysed. Temperature distribution is obtained 
using Thermal Resistance Approach (TRA) where spatially varying thermal conductivity is 
assumed to be a discontinuous piece-wise function of radial distance rather than the continuous 
power functions. Whole body is considered to be constructed of layers having different material 
property but each layer is assumed to be homogeneous. Then temperature values are obtained 
considering each layer’s thermal resistance and the total thermal resistance network. Results were 
compared with other established studies and results obtained by FEM. 

1. Introduction 
Functionally graded materials are a class of superior composite which are different from the traditional 
composite materials where variation of material properties along any direction is discontinuous but in 
FGMs this variation is continuous and smooth which allows researchers to tailor the gradient of material 
property variation with more flexibility. FGMs are used in various engineering fields because of their 
advantages over various metal alloys and composite materials to meet extreme material requirements. 
Many researchers have worked on FGMs since they were first introduced in Japan in 1984 [1]. Yahya et 
al [1] analysed the behaviour of thick FGM spheres under combined thermal and pressure loading. Jabbari 
et al [2] presented a general solution for the one dimensional steady state thermo-mechanical stresses in 
hollow thick porous FGM sphere. Jabbari et al [3] also developed an analytical method to obtain the 
solution for 2D transient thermal and mechanical stresses in a hollow FGM sphere and piezoelectric 
layers. S Faruqui et al [4] developed thermal resistance method for solving the temperature distribution 
problem in hollow FGM cylinders. S Karampour [6] presented solution for 2D thermal and mechanical 
stresses in poro-FGM spherical vessel. X L Peng and X F Li [7] analysed the thermo-elastic behaviour of 
cylindrical FGM vessels. Zimmerman R W and Lutz M P worked on thermal stresses and thermal 
expansion in uniformly heated FGM cylinders. In this paper temperature distribution in FGM sphere is 
analysed using thermal resistance approach. Results have been obtained for two different power functions 
of material gradient and also were compared with existing results in the literature. The advantage of this 
method over others is that results can be obtained for any type of material property variation where 
obtaining analytical solutions are much more complex due to nonlinearity. 
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2. Formulation of problem 
A hollow spherical body is considered with inner radius �� and outer radius ��, thermal conductivity 
 ����(�) is assumed to vary radially from 	� to 	�following any of the power functions of equation (1) 
and (2) where 	� and 	� are thermal conductivities of innermost and outermost surfaces respectively. 
 

                                                  ����(�) = 	� + (	� −  	�) 
 ���

����


 �
�

                                                               (1) 

                                                  ����(�) = 	�e��                                                                                       (2) 
 

In equation (1) “n” is the power law index and in equation (2) 	� is a material constant, “e” is the Euler 
constant, "�" is the inhomogeneity parameter and � = �

�

. 

 
2.1 Thermal problem and boundary condition 
Taking spherical coordinate system into account and assuming the temperature of the spherical body 
varies only in radial direction and no internal heat generation the obtained governing equation is 

�
��


	���(�)�� ��
��

� = 0                                                                   (3) 

Solutions were obtained under dirichlet boundary condition when temperature values at innermost and 
outermost surfaces of the body are known. These values were taken as �(��) = �� and  �(��) = �� 
respectively.  

 

 

 
 

Figure 1. (a)Radial distribution of  ����(�) following power function equation (1) and 

an assumed piecewise distribution for Thermal Resistance Approach. (b) Radial 
distribution of  ����(�) following equation (2). 

(a) (b) 
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3. Proposed solution procedure (Thermal Resistance Approach) 
For dirichlet boundary conditions a solution can be obtained by dividing the whole spherical body into 
layers as shown in Figure 2(b) and considering each layer a constituent element having homogenous 
material property throughout. Each element’s thermal conductivity can be assigned to it from equation (1) 
or (2) by taking average of the values at innermost and outermost boundaries of that particular layer. The 
radial variation of thermal conductivity of the whole body is then assumed to be a piece-wise function of 
radial distance, r which is shown in Figure 1(a). If the spherical body is divided into ‘N’ number of layers 
or elements, each layer will have a thermal conductivity according to this piece-wise variation. After 
getting ‘N’ number of different thermal conductivities for ‘N’ different layers, thermal resistance can be 
computed for each of them. Thermal resistance �� across the j�� layer can be determined using the 
following equation  

   �� = ���!���

#$���!��%�
 

 
Where r& and r&'* are inner and outer radii of the ,�- layer respectively. The total thermal resistance 
across the inner and outer surface of the whole body can be calculated from equation (5) where 
R*, R�, R/, etc. are the thermal resistances of different layers. 
 

                   ����1� = �* + �� + ⋯ + �� + ⋯ + �3 
 
However, in this approach it is assumed that there is no heat loss or additional thermal contact resistance 
at the contact surface of two adjoin layers. Temperature values are obtained at each of the contact surfaces 
of constituent layers. Temperature at contact surface of the j�� and (j + 1)�� element at r = r&'* is 
computed from (6). When T(r5) = T5 and T(r6) = T6, 
 

      ��'* = 78!'89'8:'⋯'8�;!'8�<>�'(8��!'8��9'8��:'⋯'8?;!'8?)>
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3.1 Finite element analysis and validate FEM 
A geometry specimen was modeled using commercial FEM solver ANSYS for a comparative study of the 
proposed method. Due to symmetry only one eight of a sphere was considered. The FEM model consisted 
of tota 1238 elements. Variation in material property was obtained by dividing the specimen into 5 
homogeneous layers each layer having same but distinct material property. The meshing region as well as 
the obtained temperature distribution is shown in Figure 4(a). 

 

	� 

	� 
	* *
	� 
	� 
	3 

(4) 

(5) 

(6) 

(a) (c) (b) 

Figure 2. (a) Continuous distribution of 	���, (b) Layered distribution of 
	��� , (c) Thermal resistance network across the layers. 
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4. Result, validation and discussion 
Results were obtained considering radial distribution of thermal conductivity to follow equation (1) and 
(2) separately. Obtaining results for power function equation (2) the values of material and geometry 

parameters were taken as reference [1]. The material property was taken as 	� = 60 G
�℃

 and geometric 

properties, inner and outer radii of the sphere were taken as �� = 40JJ and �� = 60JJ respectively 
Boundary condition was �(��) = 300°L & �(��) = 25°L. Results were obtained for inhomogeneity 
parameter � = −4, −3, −2, −1,0,1,2,3 PQS 4 as shown in figure 3(a). From the figure 3(a) it can also be 
observed that results obtained by thermal resistance approach are in well agreement with results obtained 
by Yahya et al [1] and FEM of this study using ANSYS solver. For power function equation (1) boundary 
condition and geometric parameters were kept same as previous and reference [1]. Material properties 

were taken as 	� = 400 G
�℃

 and 	� = 250 G
�℃

 . Figure 1(a) shows the radial distribution of 	��� for 

power law index Q = 0.1, 0.25, 0.5, 1, 2, 4 PQS 10. Figure 3(b) shows obtained results for Q = 1, 2, 4, 10 
by thermal resistance approach. Table 1 contains a comparison among obtained results from thermal 
resistance approach and Yahya et al [1] for � = 1 & − 1 and we can conclude that the results agree with 
each other. Figure 4(a) shows mesh and the radial temperature distribution obtained by FEM using 
ANSYS solver. Figure 4(b) is the radial distribution of thermal resistance for different values of β. 

         
    
 Table 1. Radial temperature distribution from this work and Yahya et al [1] 
 

 

 
 

 
 

r r5V  
    

This Work 
  Yahya[1] 
(Analytical) 

Yahya[1] 
(FEM) 

This Work 
   Yahya[1] 
(Analytical) 

Yahya[1]   
(FEM) 

1 1 1 1 1 1 1 
1.0875 0.745182 0.74516 0.74574 0.810369 0.81036 0.81052 
1.1875 0.520155 0.52008 0.52050 0.611509 0.61148 0.61162 
1.2875 0.345443 0.34538 0.34568 0.428719 0.42870 0.42881 
1.3875 0.207095 0.20707 0.20729 0.259595 0.25959 0.25968 

       1.5 0.083333 0.083333 0.08333 0.083333 0.083333 0.083333 
 

 

Figure 3. (a) Radial distribution of temperature for power function equation 
(2), (b) Radial distribution of temperature for power function equation (1). 
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5. Conclusion 
A solution to the temperature distribution problem of FGM hollow sphere is presented in this study for 
two different power law functions separately using thermal resistance approach. Solutions were obtained 
for different values of inhomogeneity parameter β for distribution of equation (2) and different values of 
power law indexes n for equation (1). Obtained results are also compared with some well-established data 
present in the literature and with results obtained from FEM using ANSYS solver. It is observed that 
results obtained in this study using thermal resistance approach comply very well with them. 
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Figure 4. (a) Temperature distribution obtained by FEM (ANSYS) for 
� = −4, (b) Radial distribution of thermal resistance for different 


