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Abstract. A new approach is proposed for isolating faults and fast identifying the 

redundant sensors of a system in this paper. By introducing fault signal as additional 

state variable, an augmented system model is constructed by the original system 

model, fault signals and sensor measurement equations. The structural properties of an 

augmented system model are provided in this paper. From the viewpoint of evaluating 

fault variables, the calculating correlations of the fault variables in the system can be 

found, which imply the fault isolation properties of the system. Compared with 

previous isolation approaches, the highlights of the new approach are that it can 

quickly find the faults which can be isolated using exclusive residuals, at the same 

time, and can identify the redundant sensors in the system, which are useful for the 

design of diagnosis system. The simulation of a four-tank system is reported to 

validate the proposed method. 

1. Introduction 
For improving the reliability and safety of industrial systems, model-based fault detection and 

isolation (FDI) is gaining increasing attention both in the scientific community and industrial 

applications. The structural analysis approach is an important branch of model-based FDI, which 

neglects the analytical form of a system model and only focuses on the structural model, i.e. only 

considering the relation between equations and variables [1]. In general, the structural analysis 

approach with no numerical problems is performed based on graph theory, which is more efficient to 

identify system diagnosis properties than analytical methods. Therefore, it can be used to handle large 

scale and complex systems and can be used in the early design stages [2]. 

Model-based FDI includes two important tasks: fault detection and fault isolation. Usually, fault 

detection is performed to check whether a fault occurrence in a system. Fault isolation is to 

differentiate between two possible fault occurrences. At present in the field of fault diagnosis based on 

structural analysis, there are two primary fault isolation approaches. The first is making use of fault 

signature matrix (FSM) to isolate faults [3], and the other is taking advantage of fault pairs [4]. 

The FSM is a binary table, which is used to characterize the diagnosability properties of a diagnosis 

system. In the FSM, the rows represent the set of residuals and the columns the set of faults. An ij-

element of the matrix includes the pattern 1 if fault j can be detected by the ith residual, otherwise it is 

0. The “signature of fault j” is the binary word formed by the jth column of a FSM. Two faults are not 

distinguishable, if the corresponding signatures are identical [3]. However, the residuals in a FSM 

usually are obtained by calculating all of the Minimal Structurally Overdetermined (MSO) sets of a 

system model, where a MSO set is a subsystem model which has a redundancy degree of one, i.e. the 
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set of equations of the subsystem which has one more equation than unknown variables. However the 

associated computational complexity increases exponentially with the redundancy degree, 

it's a complicated and time-consuming process to get all possible MSO sets in practice [5]. 

The isolation approach based on fault pairs is proposed by the fault isolability representation, i.e. 

one fault is structurally isolable from another. In general, it is assumed that a fault f is involved in only 

one equation, which known as fault equation and denoted by ef, then the isolability relations can be 

transformed into the incidence relations between the fault equations. If all faults are detectable in a 

system, the isolability relation is symmetric [4]. Then, for a system with n detected faults, more than 

n×(n-1)/2 times calculation is performed to derive overdetermined subsets and the isolability 

properties can be identified from those results. However, the calculation of this approach is still an 

issue for a large scale and complex system [6]. 

For ease of presentation, different system models are interpreted as follows. In the generic case the 

studied process is a stable system, and the fault free behavioral model of the system is called original 

system model. After adding some sensors to monitor the process state, a new model consists of the 

original system model and the sensor measurement equations, which is called monitored system model. 

In the existing structural analysis approaches, fault signals usually are neglected as know variables. 

Whereas, from a computational point of view, a fault signal can be regarded as an additional state 

variable, so an augmented system model can be constructed by the original system model, fault 

variables and the sensor measurement equations [7, 8]. During estimating the fault variables of a 

system model, the fault isolability properties can be found from the dependence relations of the fault 

variables. For simplicity, it is assumed that the sensor measuring is valid, and no sensor faults. Single 

fault can only violate one equation and one equation at most affected by a fault, so there is a one-to-

one relationship between a fault signal and a fault equation. And f is adopted to represent both the fault 

signal and the fault variable in this paper. In a monitored model and in an augmented model, the 

equations affected by a fault f are all denoted ef, the only difference is that in the first case f can be 

regarded as f ≡ 0, but in the latter f may not be 0. 

As noted above, the two existing approaches have in common that it is individual fault isolates 

from others, which leads to large calculation. Some faults of a system are not classified with special 

isolability property, and the searched range of no distinguishing faults is not reduced. In addition, 

during identifying fault isolability they cannot find out the sensor redundancy. From the viewpoint of 

solving variables, a new isolation approach based on the incidence matrix of an augmented system is 

proposed in this paper, that can find which fault can be diagnosis by an independent residual and, at 

the same time, determine which sensors can be removed as redundancy, in another words, removing 

those sensors do not decrease the fault isolability. What is more, the results of this approach are 

practically valuable for fast isolating faults and optimal sensor placement. 

The paper is organized as follows. Following the introduction session, a background of structural 

analysis for FDI is first presented in Section 2. Then, in Section 3, fault isolability properties of an 

augmented system are provided. In Section 4 a new approach for isolating fault is proposed and the 

availability of the approach is validated by means of the results of an academic example in Section 5. 

Finally, this paper is summed up in a conclusion in Section 6. 

2. Background of FDI based on structural analysis 

2.1. Bipartite graph and matching 

In the field of fault diagnosis based on structural analysis, the structural model of a system can be 

described using a bipartite graph (or equivalently its incidence matrix), since only the relation between 

equations and variables is considered [2]. Let G (E, V, A) be a bipartite graph, in which E is a set of 

model equations, V is a set of unknown variables and A a set of edges. An edge (ei, vj)∈A, for ei∈E 

and vj∈V, holds for variable vj is included in equation ei. The corresponding incidence matrix M of the 

bipartite graph G is a boolean matrix where each row in the matrix represents an equation and each 

column a variable. M (i, j) = 1 if (ei, vj)∈A, 0 otherwise. Then, the structure of an augmented system 
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incidence matrix can be regarded as a combination, which is constructed by a monitored system 

incidence matrix and the corresponding fault matrix (see Table 1). 

Additionally, the notion of matching in a bipartite graph is the important tool for structural analysis 

approaches, which is used to identify the overdetermined subsystems that imply the diagnosis 

properties. A matching M is a subset of edges, and there is no two edges sharing the same node in M. 

A matching with the maximal number of edges is called a maximum matching. A vertex x is said to be 

covered by a matching M when there is an edge l∈M and x is incident to l. A matching is a complete 

matching with respect to a vertex set, if the matching covers all vertices in the set. And a matching is a 

perfect matching of bipartite graph G, if the matching covers every vertex of G. 

2.2. Dulmage-Mendelsohn decomposition and algorithm 

2.2.1. DM decomposition 

The Dulmage-Mendelsohn (DM) decomposition is an important theoretical tool in the structural 

analysis approach [9]. That can be implemented by only permuting rows and columns of the incidence 

matrix to derive an upper triangular matrix. Figure 1 shows a general DM decomposition, where the 

gray-shaded areas include ones and zeros, but the white areas only contain zeros. Moreover, the bold 

line represents a maximum matching in the matrix, which shows a calculation path to be performed 

sequentially for some unknown variables. 

The decomposition of a model M is illustrated in Figure 1 where: M 
+ 

is the structurally 

overdetermined part i.e.| M 
+ 

|>| X 
+ 

| this means that it has more equations than unknown variables,. M 
0
 is the structurally justdetermined part, | M 

0
 |=| X 

0
 |. M 

−
 is the structurally underdetermined set,  | M 

−
 

|<| X 
−
 |. 

It is well noted that there are two important properties on the DM decomposition for our new 

approach. First, it is well known that the model-based FDI is performed based on the consistency 

check of system redundancies. So the overdetermined part is useful for fault diagnosis since only the 

part includes redundancy [2] [10]. Second, there is a complete matching to the unknown variables of 

the overdetermined part, and the number of equations is as many as the unknown variables in the 

justdetermined part, then all variables in the justdetermined subsystem can be calculated 

unambiguously by the maximum matching. 

For the convenience of presentation, the areas in a DM decomposition matrix are denoted as 

follows (see Figure 1). The area of unmatched variables in the underdetermined part is denoted by A11, 

A12 is the matched area in the underdetermined part, A23 is the justdetermined area, A34 is the matched 

area in the overdetermined part, and A44 is the unmatched area in the overdetermined part. 
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Fig.1DulmageMendelsohn 

decomposition of a model M 

             Fig.2 A system model and its DM decomposition 

2.2.2. DM decomposed algorithm 

Any finite-dimensional system can be divided into three main parts, namely, overdetermined, 

justdetermined and underdetermined parts, which can be obtained by the following algorithm [11]: 

(1) Get a maximum matching M in a bipartite graph G (E, V, A). 

(2) Put up the directed graph G’ from G by means of replacing each edge in M with bi-

oriented edges, and then orienting all other edges from E to V. 
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(3) Find all equation vertices which are not covered by the matching M, and calculate all 

descendants of the sources, then the overdetermined part M 
+
 is composed of the descendant 

vertices. 

(4) Similarly, find all variable vertices which are not covered by M, and calculate all ancestors of 

the sinks, the underdetermined part M 
−
 is composed of the ancestor vertices. 

(5) Finally, the justdetermined part M 
0
 is obtained by M 

0 
= G - M 

+ 
- M 

−
. 

Figure 2 illustrates the DM decomposition of a system model in the form of a bipartite graph. It is 

worth mentioning that the DM decomposition result of any finite-dimensional graph is unique, which 

is irrelevant to the choice of a maximum matching in the diagnosis system [12]. In this paper, the 

decomposition is implemented with the help of the dmperm command in MATLAB
®
. 

2.3. The basic concepts of fault diagnosis 

In this section, some basic concepts are presented for explaining the properties of fault diagnosis. It is 

worth pointing out that those concepts are based on the fact that a fault f is regarded as a known 

variable. 

Definition 1 (Fault detectability) [4]: A fault f is structurally detectable in a monitored system 

model M , if ef ∈M 
+
. 

Definition 2 (Fault isolability) [4]: Given a monitored system model M and a set of fault F which 

affect the equations of M, a fault fi ∈F is structurally isolable from fj∈F, if efi∈(M\{efj})
+
. 

Definition 3 (Fault diagnosability) [13]: Given a monitored system model M, and a set of fault F 

which affect the equations of M, a fault fi∈F is diagnosable if it is detectable and it holds efi∈(M 

\{efj})
+
 for all fj∈F \ fi. 

A conclusion can be drawn from the above definitions that fault detectability is the precondition of 

fault isolability. It should be emphasized that according to definition 2 some faults cannot be isolated 

from each other when they affect the equations in the same MSO set. So, for the sake of simplification, 

in this study it is assumed that the considered monitored system is an overdetermined subsystem, 

which redundancy degree is more than one. After transforming a monitored system model into an 

augmented system model, a corresponding DM decomposition can be obtained by the algorithm in 

section 2.2. Then a calculation ordering for some unknown variables can be derived by means of the 

decomposition. From the calculation ordering of a fault variable f, in other words during estimating the 

fault variable f, the dependence relations between f and other fault variables can be found, that implies 

the isolability of the faults. Therefore, in the next section some fault isolability properties are 

introduced from the viewpoint of solving variables.  

3. The isolability performance of an augmented system 
Theorem 1: Given the DM decomposition of the incidence matrix of an augmented system model, if 

there is an overdetermined part, any fault variable of the model cannot exist in the overdetermined 

area (the areas of A34 and A44). 

Proof: Since the overdetermined part is composed of A34 and A44 in a DM decomposition, it is 

necessary to prove this theorem in those two areas respectively. 

(1) Any fault variable f cannot exist in the unmatched area A44 of the overdetermined part. 

Figure 1 shows that in a DM decomposition the bold line represents a maximum matching, this 

means that the elements on the bold line are all 1. In this work, it is assumed that a fault only affects 

one equation, i.e. for a fault variable f it only appears in the corresponding equation ef. Therefore if a 

fault variable f1 exists in the area A44, the element of the column corresponding to variable f1 on the 

bold line must be 0. It is inconsistent with the DM decomposition. So, any fault variable cannot exist 

in the area A44. 

(2) Any fault variable f cannot exist in the area A34  

Reduction to absurdity. Suppose in the area A34 there is a fault variable f, the corresponding fault 

equation is ef. Since there is a maximum matching in the DM decomposition, in a similar way with the 

knowledge of step 1, it is can be proved that the position (ef, f) in the matrix must be on the bold line 
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of the DM decomposition, i.e. the edge (ef, f) must belong to a maximum matching in the bipartite 

graph model. 

According to the DM decomposition algorithm in section 2.2, the overdetermined part of a bipartite 

graph model is composed of all vertices, which are the descendants of all equation vertices that are not 

covered by a maximum matching. Since fault variable f only belongs to ef, there are not oriented edges 

between f and any other equations. So, the descendants of other equations do not include variable f. 

For example, in Figure 3 there is a bipartite graph model, equation vertex set {ef, e1, ..., e9}, and 

variable vertex set {f, v1, ... , v9}, where f is the fault variable and the corresponding fault equation ef. 

Suppose that edge (ef, f) belongs to a maximum matching M1 in the model, and equation e9 is not 

covered by the maximum matching. As Figure 3 shows, there is not a bi-oriented edge between ef and 

any other variable, for instance v9, so the descendants of equation e9 do not include variable f. This 

means that edge (ef, f) does not belong to the maximum matching M1, and it is in contradiction with 

the above assumption. So, a fault variable f also cannot exist in the area A34.  

Then theorem 1 is proved. 
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Fig.3 Assumption of a fault variable in the overdetermined part 

For ease of presentation on the diagnosis property, some operations can be chose by the structure 

form of an augmented system incidence matrix and the solving way of a maximum matching. In the 

form of structure, the incidence matrix of an augmented system can be regarded as the combination 

about the left part — the incidence matrix of the corresponding monitored model and the right part — 

the fault matrix (for example in Table 1). In the matching way, a maximum matching can be obtained 

by giving priority to matching the state variables of the system [14]. It is worth noting that the above 

operations do not change the structure of the augmented model, and according to the unique result on 

the DM decomposition, the overdetermined part of the augmented model is also unique. Using this 

way to deal with augmented models, the results are also universal. 

Theorem 2: Given the DM decomposition of an augmented system model, if there is an 

overdetermined part in the decomposition, it implies that there is sensor redundancy in the 

corresponding monitored system. 

Proof: Since an original system is a stable system in this study, the original system is a 

justdetermined system. By giving priority to matching the state variables in the corresponding 

augmented incidence matrix, a maximum matching can be derived, where the equations and state 

variables of the original system model are all matched.  

Theorem 1 demonstrates that fault variables do not appear in the overdetermined part. If there is an 

overdetermined part in the DM decomposition of the augmented system, there are some redundant 

equations to verify some state variables, in other words, those state variable can be evaluated without 

those redundant equations in the overdetermined part. Since the system behavior equations are all 

matched in the DM decomposition, those redundant equations must be sensor equations. This means 

that there are redundant sensors in the corresponding monitored system. 

It is well noted that the division of the three main parts of the DM decomposition is unique, so the 

overdetermined part of an augmented system model is unique no matter which maximum matching is 

chose.  

Theorem 2 is proved. 

It is should be emphasized that the redundant sensors in the system can be found easily by giving 

priority to matching the state variable of an augmented system model. 
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Theorem 3: Given the DM decomposition of an augmented system model. If a fault variable f exists in 

the area A23 of the justdetermined part, there is a residual r which is only sensitive to f and f is isolable 

from any other fault in the system. 

Proof: Suppose a fault variable f appears in the justdetermined part A23 of an augmented system 

model, and ef is the corresponding fault equation. According to the properties of a DM decomposition, 

the variables in the justdetermined and overdetermined parts are all complete matched, this means that 

the variables of area A23 can be estimated with the known variables in A34 and/or A44.  

In this paper, single fault f is only involved in one equation. Thus, in an augmented system, there is 

only one entry in the corresponding column of the f being equal to 1. According to the proof of 

theorem 1, the position (ef, f) of the matrix is on the maximum matching line, so there is a calculation 

ordering for evaluating the fault variable f which does not affect the evaluating of any other variable. 

Similarly, the other fault variable also does not affect the evaluation on f. The equation set of the 

calculation ordering for variable f is denoted by MfA. So in the augmented system, the model MfA is a 

justdetermined subsystem.  

Therefore, the variable f can be calculated theoretically by a computational expression, and which 

do not include other fault variable. The computational expression is a fault indicator, which is a 

residual that only sensitive to the fault f. The residual is termed exclusive residual for f. 

For the sake of presenting the isolability, the monitored system M is considered. In the monitored 

system case, the model Mf which corresponds to MfA is an overdeterminded subsystem since the 

variable f is regarded as a known variable. Then Mf = Mf
 +

, ef ∈Mf. And for any other fault fj, it holds efj 
 Mf , then Mf   (M \{efj})

+
, thus ef∈(M \{efj})

+
. Therefore, according to definition 2, the fault f which 

locates in the area A23 is isolable from any other fault, and f is a diagnosable fault.  

Theorem 3 is proved. 

4. A new approach for isolation fault  
A new fault isolation approach can be obtained from the above theorems, which based on the DM 

decomposition of an augmented model. According to the faults and the corresponding fault equations, 

an augmented system model can be transformed from a monitored system model, and the 

corresponding DM decomposition can be obtained.  

If there is an overdetermined part in the decomposition, the monitored system has sensor 

redundancy. If a fault equation ef locates in the justdetermined part of the decomposition and the 

corresponding fault f is a diagnosable fault which is isolable from any other fault in the system. The 

pseudo-code of the corresponding new algorithm is provided as follows. 

 

Algorithm: Find redundant sensors and diagnosable faults with exclusive residuals 

Require: the augmented system model MA and the corresponding fault equation set 

FEqu∑ 

Function ReSensorAndUniFault(MA, FEqu∑) 

UniReFEqu ← ϕ         % initialize the set of fault equations that the faults is isolated 

with exclusive residuals  

UniReFault ← ϕ         % initialize the set of fault corresponds to UniReFEqu 

ReSeEqu ← ϕ         % initialize the set of redundant sensor equations 

(MA
−
, MA

0
, MA

+ 
) ← DM-decompose(MA)    % the DM decomposition of MA  

UniReFEqu ← (MA
 0
) ∩ FEqu∑     % get the set of fault equations where the faults 

can be isolated with exclusive residuals 

if  UniReFEqu ≠ ϕ  then 

UniReFault ← UniReFEqu     % get the corresponding faults that can be isolated 

with exclusive residuals 

endif 

if  (MA
+ 
) ≠ ϕ  then 

    ReSeEqu ←the redundant equations    % get redundant sensor equations 

endif 
Return (UniReFault, ReSeEqu) 
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5. Example 
For verifying the availability of the approach proposed in this paper, which is used to identify the fault 

diagnosis properties of the four-tank system in Figure 4, and then the results are checked by FSM 

method. 
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Fig.4 Diagram of the four-tank monitored system 

A four-tank system is illustrated in Figure  , where the four tanks are denoted by   ,    ,    and    

respectively,  
 
 is the outflow of tank   ,   ̅  is the inflow of tank   ,    

 is the pressure in tank   , and 

the inflow   ̅  is a known variable. Three valves are denoted by   ,    and    respectively. The 

sensors   ,   ,    and    measure  
 
,   

 
,  

 
 and  ̅  respectively. The leakage faults    ,   ,    and    are 

considered in the tank   ,    ,    and    respectively, and the leakage faults   ,    and    affect the 

valves   ,    and    respectively. The augmented model of the four-tank system is represented by the 

set of equations. 

            -      
                                               

        ̇   ̅                  ̇   ̅                  ̇   ̅                  ̇   ̅          

      ̇    
 
      0    ̇    

 
           ̇    

 
             ̇    

 
    

          ̅    
 
           ̅    

 
           ̅    

 
             

                              ̅       

Where Ci is the capacitance of tank Ti, Ri is the flow resistance of valve Vi. It is shown that the 

faults f1, f2, f3, f4, f5, f6 and f7 are involved in the fault equations e5, e6, e7, e8, e13, e14 and e15 respectively. 

The incidence matrix of the augmented four-tank system is shown in Table 1. It can be seen that 

the matrix can be regarded as a combination, which is composed of the left part that is the incidence 

matrix of the monitored four-tank system and the right part that is the fault matrix. The DM 

decomposition of the matrix is showed in Table 2. The equations e5 and e13 locate in the 

justdetermined area. According to the matching of the variables in the justdetermined part, there is 

mathematical expression to calculate the variables f1 and f5, respectively, and each of the fault 

variables is not correlated with any other fault variable. Therefore, the faults f1 and f5 are diagnosable 

faults. They are isolable from any other faults, and f1 is isolable from f5 and vice versa.  

Furthermore, the overdetermined part of the DM decomposition is the set of equations EA44= {e1, 

e16, e17, e18}, and e18 is a redundant equation (see Table 2). Thus there is sensor redundancy in the four-

tank system, and according to the properties of DM decomposition the redundant sensor equation is 

one of the measurement equations { e16, e17, e18}. 

Table.1 Incidence matrix of the 

augmented four-tank system 

Table.2 DM decomposition of the 

incidence matrix of the augmented four-

tank system 

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1q 2q 3q 4q 1p 2p 3p 4p 1p 2p 3p 4p 2q 3q 4q 1f 2f 3f 4f 5f 6f 7f

1e

2e
3e

4e
5e

6e
7e

8e
9e

10e
11e
12e

13e

14e

15e

16e
17e

18e
19e  

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3e

4e

1e

2e

11e

12e

9e

7e

8e
14e

15e

10e

5e

13e

17e

18e

6e

16e

6f 7f3f 4f 1p 2p3q 4q 1p 2p3p 4p 3q 4q3p 4p
5f 1q1f2f2q 2q

19e

 



8

1234567890‘’“”

SAMSE IOP Publishing

IOP Conf. Series: Materials Science and Engineering 322 (2018) 072056 doi:10.1088/1757-899X/322/7/072056

 

 

 

 

 

 

For verifying the validity of the above results, FSM approach is used to calculate the fault 

isolability of the four-tank system and compare with those conclusions. According to the algorithm in 

[10], there are 21 MSO sets in the monitored four-tank system. Those MSO sets are used to generate 

residuals, and the transpose of the fault signature matrix of the four-tank system is presented in Table 

4. As can be seen from Table 4 those residuals r2, r9 and r10 are only sensitive to fault f1, and the 

residual r8 is only sensitive to fault f5. So, the faults f1 and f5 are all diagnosable fault, each of them is 

isolable from any other fault. 

Furthermore, if removing equation e18 from the model of the four-tank monitored system, a revised 

monitored system can be obtained, and the corresponding incidence matrix is shown in Table 3. In the 

same way, 11 MSO sets can be derived and the transpose of its FSM is shown in Table 5. Comparing 

the two FSM transposes (Table 4 and Table 5), it is shown that the two monitored systems have the 

same isolability properties, i.e. the faults f1 and f5 are all diagnosable fault, the faults f2, f3, f4, f6 and f7 

are not isolable from each other. So there is sensor redundancy in the original monitored four-tank 

system (see Figure 4).  

So the results of the new isolation approach proposed in this paper are right, and the new approach 

is feasible. 

Table.3 Incidence matrix of the corrected four-tank system 

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1q 2q 3q 4q 1p 2p 3p 4p 1p 2p 3p 4p 2q 3q 4q

1e

2e
3e

4e
5e

6e
7e

8e
9e

10e
11e
12e

13e

14e

15e

16e
17e

18e  

Table.4 The transpose of FSM of the four-tank 

system 

Table.5 The transpose of 

FSM of the corrected four-

tank system 

0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1r 2r 3r 4r 5r 6r 7r 8r 9r 10r 11r 12r

1f

2f

3f

4f

5f

6f

7f

13r 14r 15r 16r 17r 18r 19r 20r 21r

 

0 1 1 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1

1r 2r 3r 4r 5r 6r 7r 8r 9r 10r 11r

1f

2f

3f

4f

5f

6f

7f  

6. Conclusion 
A new fault isolation approach based on augmented system structure is presented in this paper. 

According to the calculation correlation of the fault variables, the corresponding fault equations can be 

classified, which reduces the searched range of no distinguishing faults, and in the sense that it 

improves the isolation efficiency. After obtaining the DM decomposition of the incidence matrix of an 

augmented system, it can be directly determined that those faults, which corresponding fault equations 

locating in the justdetermined part, are diagnosable faults, i.e. each of them can be isolable from any 

other fault. What is more, if there is an overdetermined part in the DM decomposition, it implies that 

the monitored system has sensor redundancy, and the redundancy equation is a redundant sensor 

measurement equation, whereas, the previous isolation approaches cannot identify the sensor 

redundancy. In addition, it is worth mentioning that those conclusions can be obtained by only one 

calculation of the DM decomposition. 
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In this paper, the new approach is provided to increase isolation efficiency and identify the sensor 

redundancy at the same time, which is useful for the optimal design of a diagnosis system. However, 

this approach does not involve the fault isolation in the underdetermined part of the augmented system. 

In the subsequent paper we will try to develop a new fault isolation algorithm for identifying all of the 

distinguished and no distinguished faults in a system. 
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