
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

4th International Conference on Advanced Engineering and Technology (4th ICAET) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 317 (2018) 012029 doi:10.1088/1757-899X/317/1/012029

Dynamics of Longitudinal Impact in the Variable Cross-
Section Rods

R Stepanov1, D Romenskyi 1, S Tsarenko2

1 Department of Structural and Theoretical Mechanics, National Research University
Moscow State University of Civil Engineering, 26 Yaroslavskoye Shosse, Moscow,
129337, Russia
2 Department of Strength of Materials, Donetsk National Technical University, 58 st.
Artema, Donetsk, 83001, Ukraine

Abstract. Dynamics of longitudinal impact in rods of variable cross-section is considered.
Rods of various configurations are used as elements of power pulse systems. There is no single
method to the construction of a mathematical model of longitudinal impact on rods. The
creation of a general method for constructing a mathematical model of longitudinal impact for
rods of variable cross-section is the goal of the article. An elastic rod is considered with a
cross-sectional area varying in powers of law from the longitudinal coordinate. The solution of
the wave equation is obtained using the Fourier method. Special functions are introduced on
the basis of recurrence relations for Bessel functions for solving boundary value problems. The
expression for the square of the norm is obtained taking into account the orthogonality property
of the eigen functions with weight. For example, the impact of an inelastic mass along the wide
end of a conical rod is considered. The expressions for the displacements, forces and stresses of
the rod sections are obtained for the cases of sudden velocity communication and the
application of force. The proposed mathematical model makes it possible to carry out
investigations of the stress-strain state in rods of variable and constant cross-section for various
conditions of dynamic effects.

1. Introduction
The research of dynamic processes is carried out using the elastic rod model for a wide range of

objects, such as: elements of drilling equipment [1-3], buildings and structures [4], power impulse
systems [5, 6], etc. Especially urgent is the problem of longitudinal impact for power pulse systems,
which are used in machines that perform various technological processes: punching, forging,
destruction of rocks, concrete coatings, piling, etc. The problem of increasing the productivity of
impact machines includes not only increasing the power, but also increasing the efficiency of energy
transfer to the process area. The latter is achieved, among other things, on the basis of studying the
process of formation of deformation waves by strikers of various geometries and searching for strings
structures that create deformation waves with rational parameters [5].

At considering the various models of longitudinal collision of bodies [5, 7], the wave model of
Saint-Venant's shock is taken as the basis, since it most fully reflects the real dynamic processes in
colliding bodies, and for its practical implementation the d'Alembert method is used. The exact
solution of the wave model is given by the Fourier method [8].

At solving the equation of longitudinal oscillations of variable cross-section rods, in the case of
impact, arise certain mathematical difficulties, for example, the given equation is an equation with
variable coefficients, the orthogonality of eigen functions, etc. Therefore, for solving the such
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problems are using various simplifying hypotheses. Thus, in [9] systems with distributed parameters
are replaced by single-mass systems (Cox's theory) or various refinements [10], or are using an
approximation of the dynamic deformations forms by static [11, 12], and in paper [13] is used the
method of averaging variable coefficients. In [7, 14] are considered the models of longitudinal impact
of various shapes rods with the using of their surface approximation by successively conjugate
cylindrical sections. Using the operational calculus in work [3], is carried out an analysis of the using
effectiveness of application of elements of drilling equipment (picks, drill rods) with different
configurations, and for each of the schemes under consideration, a custom mathematical model is
being constructed. The longitudinal impact of rods with conical and hyperbolic forms is considered in
[15, 16], solutions of the wave equation for which are obtained in elementary functions, and in [17]
dynamical processes of longitudinal impact in hollow rods of conical shape are studied using Bessel
functions.

Thus, based on the fact that in the theory of calculations, at the
present time, there is no single approach to constructing a mathematical
model of the longitudinal impact of complex configuration rods, the
search and development of new solutions to longitudinal impact
problems is an actual scientific and practical problem.

2. Development of a mathematical model
As a mathematical model of the object under consideration, we take

an elastic rod of length l, the distributed mass m and the cross-sectional
area F, which varies according to the exponent law from the
longitudinal coordinate x:

Fm  ;  zFF 2 ;   k
l

x
kz  1 ,

2

1

h

h
k   10  k (1)

when  – material density, 2F – the cross-sectional area of the larger

base of the rod, 1h  и 2h – the parameters of the cross dimensions of the

upper and lower sections are determined by the geometry of the rod
cross-section of the rod (the radius of the cross-sections for conical
structures), the exponent μ depends on the rod configuration, for
example, for conical tubes μ = 1, and for a conic rod of solid cross 
section μ = 2 (figure 1). 

Equation of longitudinal displacements  txu , , taking into account

the accepted notation, will have the view [17].
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when E – elasticity modulus, p(x,t) – external load.
Let us find the general solution of equation (2) at   0, tzp (the case

of free oscillations).
Separating the variables, obtain an equation for the eigen functions whose solution has the view

[18].
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n – oscillation eigen frequencies,  zJ  и  zY – Bessel functions.
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Figure 1. Scheme of
longitudinal impact of a
complex configuration

rod.
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For the convenience of solving problems with different boundary conditions, we introduce the
following notation for functions:
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In point kz  the presented functions take the values:

    1 kDkA nn ;     0 kCkB nn .

Using the adopted dependencies, arbitrary constants in (3) can be expressed in terms of
displacement 0u and force 0N in the zero section, then the expressions for displacements and

longitudinal forces for an arbitrary waveform can be represented as:
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On the basis of the reciprocity theorem [19], at the absence of concentrated masses, the eigen

functions will be orthogonal with weight    21zz . To find the square of the eigen functions norm,

we first proceed in the same way as in [17] for eigen functions with different indices.
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Passing to the limit at nm  , are getting
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Having determined the partial derivatives by n , a square of the eigen functions norm find in the

form
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Now consider the case of forced oscillations, this requires finding a solution  tzu ,2 of non-linear

equation
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The equation solution (7) can be represented as a row by eigen functions
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Substituting this row into (7) and taking into account relation 22
nn  , are getting
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Applying the Fourier method to equation (8), taking into account the orthogonality property of the
eigen functions with weight, obtain the equation with respect to the coefficients nw
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As an example, consider the scheme of mass impact M on the upper end of the rod, while the mass
is held for some time by the rod, and its lower end is rigidly limited (figure 1), such a circuit can
simulate a stress-strain state in waveguides of power pulse systems or in piles in the process of their
driving. For the adopted scheme, the movement of the bottom end will be 00 u , the boundary

condition on the second end of the rod

   tluMtlN ,, && (10)

initial conditions

  00, xu ;    lxevxu  00,& (11)

when e(x) – a unit function.
The equation for displacements and longitudinal forces for an arbitrary shape is obtained in the

form
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From the boundary condition (10) obtain the equation for finding the eigen values
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here 0/ MM , 0M – the road mass.

Taking into account the fact, that in some
approximate methods of dynamic calculation [9, 10]
is using the value of the first eigen frequency, we
estimate the effect of the parameter on the values of
the first eigen value of (12)
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the frequencies of the rods of constant cross
section are determined in the same way [8].

Numerical studies of dependence 1
~
 on the

parameter value k  for conic hollow roads (ν=0) and 
solid (ν=-0,5) sections, without taking into account 
the concentrated mass ( 0 ), are presented at figure
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Figure 2. Depending ͠λ1 from the value of the
relative cross dimension parameter k.
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2. It can be seen from the graph that for the case 1k the value 1
~
 coincides with the known value

571,12/
~

1  [8] (is indicated by the dot-dash line on the graph figure 2).

Given the presence of the concentrated mass on the upper end of the rod (figure 1), the eigen
functions will be orthogonal with the weight
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zz , where  z – Dirac’s delta function. Then from the relation (6) the

square of the eigen functions norm will be determined by the formula
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First, we find the movements and forces from the the speed reporting. From the first initial
condition (11) it follows that

   





1

sin,
n

nnnv tzZtzu (13)

If the second initial condition (11) is satisfied, then in expression (13) the coefficients n will take

the view
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where  /Ec - longitudinal wave velocity of the rod [8].

Dependences for displacements, forces and stresses are obtained in the view
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Taking into account to the sudden weight application Mg (9) will have the view
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and their solution
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Thus, in the final form obtain the equations of displacements, forces and stresses from the
application of the load
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Introduce the notation for dimensionless quantities:
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

E

l

t
– dimensionless time,    
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p
p  – relative displacement.

At figure 3 are shown the dependencies of stresses v
~ from time  , caused by communication to

the upper end of the speed rod from the falling load ( 5,0 ) in the shock end ( 1z ) and at the lower

end ( kz  ), for conical shaped rods of solid section ( 5,0 ),with the ratio of the radiuses of the

upper and lower sections, respectively: 8,0k  и 2,0k . Analysis of stresses and stresses for various

parameters of the scheme showed that for rods with a decrease in the value of the relative cross
dimension K, the stresses at the lower end increase, but not in proportion to the decrease in the cross-
sectional area, but to a much lesser extent, i.e. the force decreases. Thus, for waveguides of power
pulse systems, it is expedient to use rods of constant cross section with sharpening only in the area of
the working part, using of rods with a decreasing cross section will lead to a decrease in the efficiency
of transferring the force pulse to the working zone.
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Figure 3. The relative magnitude of the stresses in the end sections of the rods of different
configurations from the velocity reporting.
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Figure 4. Relative values of displacements and stresses in the end sections of the rod with
parameters ν=-0.5; k=0.8; ζ=0.5, from the load application. 
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At figure 4. are presented the relative displacements pu~ and stresses p
~ depending on time  ,

caused by a sudden application to the upper end of the power shaft, for a conical shaped rod of solid
section ( 5,0 ), with the ratio of the radiuses of the upper and lower sections 8,0k . The study

showed that different parameters of the scheme do not significantly affect the values of the maximum
relative displacements and forces, the stresses in the lower section increase in proportion to the
reduction in the cross-sectional area. Those, in systems where the transfer of the pulse is mainly due to
the application of the load, and not the speed, in this case the configuration of the rod will not affect
the transmission efficiency of the power pulse.

3. Сonclusions 
The proposed mathematical model of the rod longitudinal impact with complex configuration

allows both direct investigation of the stress-strain state and, in contrast to numerical methods and
means of object modeling, the analytical solution makes it possible to estimate the degree of influence
of various model parameters on the unknown quantities. The presented algorithm of calculation can be
put in the basis of CAD for imitating modeling of complex mechanical systems. It should also be
noted that all the parameters of the model are determined and at the value 5,0 that corresponds to

the rods of the constant section, so can use the unified approach to the construction of rod models with
various configurations
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