
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

QIR  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 316 (2018) 012027 doi:10.1088/1757-899X/316/1/012027

 
 
 
 
 
 

Modeling of a Reaction-Distillation-Recycle System to 

Produce Dimethyl Ether through Methanol Dehydration 

Y Muharam
1,2

, L M Zulkarnain 
1
 and A S Wirya

1
  

1
 Department of Chemical Engineering, University of Indonesia, Depok 16424, 

Indonesia  

 

E-mail: muharam@che.ui.ac.id 

 
Abstract. The increase in the dimethyl ether yield through methanol dehydration due to a 

recycle integration to a reaction-distillation system was studied in this research. A one-

dimensional phenomenological model of a methanol dehydration reactor and a shortcut model 

of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s 

of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 

m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the 

reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol 

conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to 

the system increases the dimethyl ether yield by 8%. 

1. Introduction 

Dimethyl ether (DME), previously known as a building block in the production of valuable chemicals 

such as methyl acetate and dimethyl sulfate, is finding its way to become a potential eco-friendly 

substitute for petroleum-derived diesel fuel and residential liquefied petroleum gas (LPG) replacing 

fuel [1, 2]. With its similar physical properties to LPG, it is possible to decrease the investment cost of 

its application as the material supply can be accomplished using existing LPG infrastructure. 

Dimethyl ether is traditionally produced in a two-step process involving syngas conversion to 

methanol and subsequently methanol dehydration to DME on solid acid catalysts. When adequate 

supply of methanol is available, only a single step of methanol dehydration is necessary to produce 

dimethyl ether using solid acid catalysts, such as γ-alumina, zeolites, and ion-exchange resins in a 

fixed-bed reactor in the temperature range of 523 K – 673 K and at the pressure up to 10 bar [3]. The 

main reaction is considered as follows: 

 2CH3OH  CH3OCH3 + H2O (1) 

In the normal temperature range, no significant side reaction exists. The equilibrium conversion for 

pure methanol feed can also exceed 92%.  

Modeling of packed-bed reactors for methanol dehydration to DME was usually accomplished for 

many industrial- and pilot-scale reactors. Bercic and Levec investigated the reaction kinetics of 

catalytic dehydration of methanol to DME [4], and then Shahrokhi & Baghmisheh developed a control 

system for methanol dehydration in a fixed-bed reactor [5]. In 2014, Ghavipour & Behbahani 
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developed a practical kinetic model that would be valid at 593 K [6]. Finally, Dadgar, et al. analyzed 

the influence of methanol dehydration on methanol synthesis in two-step DME synthesis [7]. 

Extensive researches on modeling of DME production reactors have been performed to obtain the 

maximum production rate of DME. None of them considers the integration of reaction, distillation and 

recycle stream. Through the use of a computer simulation, it is possible to determine the effects of the 

integration to the DME yield. In this study a model of reaction-distillation-recycle system was 

developed to predict the increase in the DME yield through methanol dehydration. 

2. Methodology 

The reaction-distillation-recycle system is shown in figure 1. A one-dimensional phenomenological 

model of a steady state, isothermal and heterogeneous reactor was developed. The mass transfer in the 

bed is assumed in axial direction and expressed by 
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The mass transfer in the catalyst particles is assumed in radial direction and described by 
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where Ci and Ci,s are the concentrations of species i in the bed and the catalyst particles, respectively, 

Di is the bulk diffusion of species i in the bed, Deff is the effective diffusion of species i in the catalyst 

pore, k is the gas-solid interphase mass transfer coefficient, a is the specific area of gas-solid 

interphase, and Ri is the generation or consumption rate of species i.   

 

 

Figure 1. Process flow diagram. 

 

The boundary conditions of those equations are as follows: 
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There have been extensive researches on the appropriate and accurate kinetic models of methanol 

dehydration. However, as several models sustain major deviation on operating temperature of below 

593 K, Ghavipour and Behbahani proposed a new empirical kinetic model [6]. This model considers 

an equilibrium constant expressed by 
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The methanol dehydration rate used in this study is  
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where k0 is the pre-exponential factor, Ea is the activation energy, CMeOH denotes the methanol 

concentration, and CW denotes the water concentration.  

Since the reactor outlet goes to distillation columns to separate the mixture, it is necessary to 

incorporate a mathematical model for the distillation columns. In this instance, the multicomponent 

distillation was calculated using a shortcut method. A widely-used approximate method, the Fenske-

Underwood-Gilliland Method, is used to estimate the minimum number of trays, the minimum reflux 

ratio, and the number of stages at a finite reflux.  

The derivation of the Fenske’s Equation is based on the assumption that the stages are at 

equilibrium and that no overhead product distillate is withdrawn from the column, resulting in 

equation (6): 
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The minimum reflux ratio for a multicomponent distillation means that at a specified reflux ratio, 

an infinite number of plates is required to achieve the desired separation. The Underwood’s Equation 

works under this assumption so that there are constant molal overflows and constant relative 

volatilities at an average temperature of the column. This is followed by solving the Underwood’s 

Equation for the variable φ: 
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When an appropriate value of variable φ is found, it is possible to calculate the minimum reflux 

ratio, as shown by equation (9): 
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Gilliland uses an empirical correlation to calculate a final number of stage N from the values 

calculated through the Fenske’s Equation and the Underwood’s Equation. The procedure is quite 

simple as one simply enters a diagram with a known abscissa value and read the co-ordinate of the 

corresponding point on the Gilliland curve. 

In order to determine the effect of a recycle stream, it is necessary to calculate two recovery 

fractions between two flowrates. The first fraction, X1 is between the flowrate exiting the reactor and 

the that exiting the bottom product of the first distillation column. The second fraction, X2 is between 

the flowrate exiting the bottom product of the first distillation column and the that exiting the distillate 

product of the second distillation column.  

The iteration to calculate the recycle stream is as follows: 
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The iteration lasts until there is no significant difference between the recycle stream calculated in 

the k iteration to that in the k-1 iteration. 

3. Results and discussion 

The simulation was carried out for the reactor length of 4 m, the inlet velocity of 0.408 m/s, the inlet 

temperature of 533 K and the inlet temperature of 18 atm.  

Figure 2 shows the concentration profiles of methanol and dimethyl ether along the reactor without 

recycle. As exhibited in the figure, the methanol concentration decreases as it is dehydrated into 

dimethyl ether. The concentration curves that never reach the flat shape indicates that the reactor 

length is effective under these parameters. The methanol conversion reaches 93% as shown in figure 

3. The conversion correlates to the Damkohler number of 11.18. As a rule of thumb, if the Damkohler 

number is higher than 10, a conversion of more than 90% may be expected. This makes the recycle 

stream of this process to have low flowrate, since more than 90% of methanol is converted into 

dimethyl ether. Nonetheless, the reaction occurs at optimum condition and thus can be tweaked for 

efficiency and sustainability in the future. As depicted in figure 4, the dimethyl ether yield increases 

along the reactor. At the position of 2 m from the reactor inlet, the dimethyl ether yield is 42% and 

continues to increase up to 48% at the reactor outlet. 

In this study, the Fenske’s Equation, the Underwood’s Equation, and the Gilliland’s Correlation 

were used to calculate the minimum number of theoretical stages at the reflux ratio of 1.5. Table 1 

shows operating parameters of dimethyl ether–methanol separation. It can be observed from the table 

that the minimum number of the theoretical stage of dimethyl ether–methanol separation is relatively 

small, i.e. 4. This is due to the fact that dimethyl ether, which is the light-key component, has very 

high relative volatility to methanol, which is the heavy-key component, and water. The calculated 

relative volatility of dimethyl ether to methanol at average column temperature of 376 K is 9.1. 

Therefore, it is very easy for dimethyl ether to separate from methanol and water. 

The minimum number of theoretical stages in the second column to separate methanol from water 

is more than three times larger than that in the first column. This is due to the fact that the boiling 

point of methanol and water is not that far apart from each other, and thus their relative volatility is not 

as high as dimethyl ether. The average relative volatility of methanol to water is 2.8, which is lower 

than that of dimethyl ether to methanol in the first column. 

As water was stripped from the mixture in the second distillation column, the top product of the 

second column was recycled and fed into the reactor as additional feed. Although the addition of this 

recycle stream to the reactor brought water to the reaction, it should be noted that its fraction was 

much lower than that of methanol. 

The recycle stream was calculated under the assumption that there was no major pressure or 

temperature losses during the whole process that would affect the conversion. It is possible to calculate 

the recycle stream in this method since the distillation calculation used is shortcut method, with the 

assumption that the compositions in the top and bottom products were constant. Therefore, the overall 

conversion of methanol in the process was also constant. The iterative calculation of the recycle 

stream could then be calculated and the results are tabulated in table 2.  

From table 2 it is clear that the flowrates of all components out of reaction-distillation-recycle 

system decrease during the iteration course. However, if we observe the mole fractions in the final 

iteration, we can see that the mole fraction of dimethyl ether increases. This can be attributed to the 
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overall increase of dimethyl ether yield due to methanol recycled to the reactor. This is also supported 

by the fact that there is an increase in smaller number of water fraction. 

 

 

 

 

Figure 2. The methanol and dimethyl ether 

concentrations along the reactor without 

recycle. 

 Figure 3. The methanol conversion along the 

reactor without recycle. 

 

 

Figure 4. The dimethyl ether 

yield along the reactor without 

recycle. 

 

Table 1. Operating parameters for dimethyl ether–methanol separation. 

Operating parameters Dimethyl ether–methanol Methanol–water 

Pressure 8 atm 8 atm 

Inlet temperature 533 K 428 K 

Top temperature 324 K 403 K 

Bottom temperature 428 K 444 K 

Reflux ratio 1.7 moles/s 10.5 moles/s 

Minimum number of theoretical stages 4 15 

 

The addition of recycle stream into the reactor has several effects on the whole process. At the first 

calculation, only fresh methanol was fed into the reactor. As the reactor outlet was processed further in 

the series of distillation columns, the recycle stream obtained as the top product of the second 

distillation column was then mixed with the fresh methanol. Therefore, the different composition of 

the feed to the reactor occurred during the process, as shown in Table 3. Although the feed of the 

reactor becomes less pure, thus decreasing the methanol conversion, it increases the overall yield of 
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dimethyl ether. This is because moles of methanol recycled is higher than that unconverted. Therefore, 

the addition of small fraction of water in the feed does not affect the production rate to a large extent. 

Table 4 shows the change in the flowrates exiting the reactor after the iterative calculation. 

As shown in Table 4, the integration of the recycle stream increases dimethyl ether yield from 

192.58 moles/s to 208.26 moles/s or increases by 8%. This may be a small number but it should be 

noted that this study operates under the best condition for the reaction. If the operating condition of the 

reactor can be set such that less energy consumed and the same yield of dimethyl ether produced, then 

the capital investment of the recycle system would be feasible. 

 

Table 2. Component flowrates and mole fractions in dimethyl ether–methanol separation. 

Component 
First iteration Final iteration 

Flowrate (moles/s) Fraction Flowrate (moles/s) Fraction 

Methanol 1.6390 0.7801 1.6170 0.7791 

Dimethyl ether 0.3221 0.1534 0.3198 0.1541 

Water 0.1397 0.0665 0.1387 0.0668 

 

Table 3. The different composition of the feed to the reactor. 

Component Before recycle After recycle 

Methanol 1 0.9809 

Dimethyl ether 0 0.0126 

Water  0 0.0066 

 

Table 4. Reactor outlet flowrates. 

Component Before recycle (moles/s) After recycle (moles/s) 

Dimethyl ether  192.58 208.26 

Methanol 24.400 28.090 

Water  192.58 205.61 

4. Conclusion 

Modelling of the reaction-distillation-recycle system for methanol dehydration to dimethyl ether has 

been performed successfully in this research. The addition of recycle stream from the second 

distillation column to the reactor increases the dimethyl ether yield by 8%. 
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