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Abstract. Leading foreign companies and domestic enterprises carry out extensive researches 
and developments in the field of control systems for autonomous cars and in the field of 
improving driver assistance systems. The search for technical solutions, as a rule, is based on 
heuristic methods and does not always lead to satisfactory results. The purpose of this research 
is to formalize the road safety problem in the terms of modern control theory, to construct the 
adequate mathematical model for solving it, including the choice of software and hardware 
environment. For automatic control of the object, it is necessary to solve the problem of dynamic 
stabilization in the most complete formulation. The solution quality of the problem on a finite 
time interval is estimated by the value of the quadratic functional. Car speed, turn angle and 
additional yaw rate (during car drift or skidding) measurements are performed programmatically 
by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are 
calculated programmatically taking into account the friction coefficient identified in motion. The 
analysis of the results confirms both the adequacy of the mathematical models and the algorithms 
and the possibility of implementing the system in the minimal technical configuration. 

1.  Introduction 
At present, practically all leading foreign companies and domestic enterprises carry out extensive 
researches and developments in the field of control systems for autonomous cars and in the field of 
improving driver assistance systems [1]. The search for technical solutions, as a rule, is based on 
heuristic methods and does not always lead to satisfactory results. Thus, the known electronic stability 
control (ESC) and velocity control system (VCS) have non-removable deficiencies, which does not 
allow to effectively use their capabilities in the road and climate conditions of Russian Federation. 

The electronic stability programs use cyclic operation (like ABS) with separate brake control. The 
cyclic operation initiates sharp decrease in braking efficiency and stability stabilization on uneven 
surfaces such as “washboard”, on paving stones, as well as on ice and snow-covered surfaces. On sandy 
surfaces, when driving in a track, the rollover speed is lower than the drift speed even for cars with low 
center of gravity. 

For vehicles with high center of gravity such as SUVs, minivans the situation occurs on smooth 
asphalt surfaces. For these vehicles, dynamic stabilization systems were developed based on predicting 
the rate of rollover, skidding and drift [2,6]. However, the lack of technology to identify the top values 
of the friction coefficients in changing driving conditions required an underestimation of their estimates 
and, accordingly, the predicted speeds of skidding and drift. 



2

1234567890‘’“”

IASF-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 315 (2018) 012023 doi:10.1088/1757-899X/315/1/012023

 
 
 
 
 
 

The purpose of the paper is to formalize the problem of improving vehicle’s stability in terms of 
modern control theory, working-out adequate mathematical model for its solution, including the choice 
of software and hardware. 

 
2.  The formulation of vehicle’s stability problem 
At the conceptual level, vehicle’s stability problem is reduced to predicting the excess of the limit speeds 
of skidding, drifting and rollover and to formation the control actions on traction and brakes, preventing 
the occurrence of these events. 

At the content level, vehicle’s stability problem follows from the solution of heading angle ߖ௠  
differential equation: 

ሶ௠ߖ ൌ ߱௠ ൅ ∆߱௠ , (1) 

where ߱௠  is the yaw rate of a car at a turn; 
∆߱௠  is the additional component of yaw rate at wheel drifts. 
The solution of (1) with allowance ߱௠ ൌ ܾିଵ ௠ܸ ௖ߖ  in the discrete time can be represented in the 

form: 

௠ߖ ሺ݇ሻ ൌ ௠ߖ ሺ݇ െ 1ሻ ൅ ܾିଵ ׬ ௠ܸ ሺ߬ሻߖ௖ ሺ߬ሻ݀߬
௧ೖ
௧ೖషభ

൅ ׬ ∆߱௠݀߬
௧ೖ
௧ೖషభ

. (2) 

The increment of heading angle ∆ߖ௠ ሺ݇ሻ at the kth step is: 

௠ߖ∆ ሺ݇ሻ ൌ ௠ߖ ሺ݇ሻ െ ௠ߖ ሺ݇ െ 1ሻ ൌ ܾିଵ ׬ ௠ܸ ሺ߬ሻߖ௖ ሺ߬ሻ݀߬
௧ೖ
௧ೖషభ

൅ ׬ ∆߱௠݀߬
௧ೖ
௧ೖషభ

. (3) 

In the case of rear wheels drift (oversteering), ∆߱௠  coincides in sign with ߖ௖  and increases the 
increment of the heading angle. In the case of front wheels drift (understeering), ∆߱௠  has the opposite 
sign ߖ௖  and reduces the module of heading angle increment. Additional rotation with yaw rate ∆߱௠  
occurs around the center of front wheels axle at rear wheels drift and around center of rear wheels axle 
at front wheels drift. The reason for these phenomena is the excess of the centrifugal force acting on the 
front and rear wheels, the frictional forces values in the lateral direction. 

In the case of rollover, the torque created by the centrifugal force is greater than the returning torque, 
caused by the force of gravity acting on the center of mass. The centrifugal force is proportional to the 
square of the speed, which makes it possible to reduce the conditions for preventing drifts and 
overturning to the system of inequalities for the speed: 

൞
െ ௅ܸ௠଴ ൑ ௠ܸ ൑ ௅ܸ௠଴;

െ ௅ܸ௠ଵ ൑ ௠ܸ ൑ ௅ܸ௠ଵ;

െ ௅ܸ௠ଶ ൑ ௠ܸ ൑ ௅ܸ௠ଶ,

 (4) 

where ௅ܸ௠଴ is rollover limit speed (m ∙ sିଵ); 

௅ܸ௠ଵ is the limit speed of front wheels drift (m ∙ sିଵ); 

௅ܸ௠ଶ is the limit speed of rear wheels drift (m ∙ sିଵ). 
Combining inequalities (4) into one allows one to reduce the problem of preventing these events to 

the problem of dynamic stabilization: 

௅ܸ௠
௅ ൑ ௠ܸ ൑ ௅ܸ௠

௎ , (5) 

where ௅ܸ௠
௎ ൌ min	ሾ ௅ܸ௠଴, ௅ܸ௠ଵ, ௅ܸ௠ଶሿ; ௅ܸ௠

௅ ൌ maxሾെ ௚ܸ௥଴, െ ௚ܸ௥ଵ, െ ௚ܸ௥ଶሿ. 
Obviously the fulfillment of inequality (5) with the corresponding ௅ܸ௠

௎  and ௅ܸ௠
௅  means that 

inequalities (4) will also be fulfilled, in this case, drift and rollover events will not occur. 
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From the standpoint of modern control theory, the solution of the dynamic stabilization problem on 
a finite time interval ሺݐଵ ൊ ଶݐ ሻ is estimated from the value of control quality quadratic functional, 
taking into account functional limitations on the technical and economic indicators of the system that 
implements control:  

ܳ൫ݐଶ ൯ ൌ ׬ ଵܥ ሾ ௠ܸ ሺ߬ሻ െ ௅ܸ௠
௎ ሺ	߬ሻሿଶ ݀߬

௧మ
௧భ

൅ ׬ ଶܥ ሾ ௠ܸ ሺ߬ሻ െ ௅ܸ௠
௅ ሺ߬ሻሿଶ ݀߬

௧మ
௧భ

⇒ min , (6) 

under ܷ ∈ ܷ௔௟௟௢௪, ܴ ൌ ሺܴு , ܴௌ ሻ
் ∈ ܴ௔௟௟௢௪; ݍ௜ ሺܴሻ ൑ ௔௟௟௢௪, 1	௜ݍ ൑ ݅ ൑ ݈, where 

ଵܥ ൌ ቊ
0, ݂݅	 ௠ܸ ൏ ௅ܸ௠

௎ ;										

ଵܥ
∗ ≫ 0, ݂݅		 ௠ܸ ൒ ௅ܸ௠

௎ ;
  

ଶܥ ൌ ቊ
0, если	 ௠ܸ ൐ ௅ܸ௠

௅ ;										

ଶ௜ܥ
∗ ≫ 0, если	 ௠ܸ ൑ ௅ܸ௠

௅ ;
  

ܴ is the vector of technical solutions; 
ܴு 	and	ܴௌ  are vectors of hardware (H) and software (S) solutions; 
ܴ௔௟௟௢௪ is allowable set of technical solutions; 
௜ݍ ሺܴሻ is ith component of technic and economic indicators vector; 
 .௔௟௟௢௪ is allowable value of the ith component	௜ݍ
The number of basic technical and economic indicators include the levels of power consumption, the 

influence of external factors, universality, fault tolerance, operating costs and the cost of hardware and 
software package. 

The best solution to the problem in the proposed formulation is the algorithm for generating control 
actions that ensures dynamic stabilization of the object state vector, implemented in a software and 
hardware environment that satisfies the system of limitations on technical and economic indicators. 

 
3.  Results of constructing the mathematical model 
The mathematical model of dynamic stabilization system includes equations of linear movement and 
limit speeds, equation system for wheel speeds on the turn, virtual sensor algorithms for car speed, turn 
angle, the additional component of yaw rate, for identification top values of friction coefficients between 
wheels and road surface, for control brakes by actuator. 

 
3.1.  The limit speeds of front, rear wheels drift and car rollover 
The number of limit speeds in the general case includes next rates: rollover speed ( ௅ܸ௠଴), front drift 
speed ( ௅ܸ௠ଵ), rear drift speed ( ௅ܸ௠ଶ), tire cord breaking speed ( ௅ܸ௠ଷ), driving wheels slip speed ( ௅ܸ௠ସ), 
speed of brake overheating ( ௅ܸ௠ହ), traffic sign speed limit ( ௅ܸ௠଺), the speed of front obstacle ( ௅ܸ௠଻), 
driving speed with “limited use” spare tire ( ௅ܸ௠଼), driving speed at insufficient tire pressure ( ௅ܸ௠ଽ), etc. 

The upper limit of safe speed is defined as ܸ ௅௠
௎ ൌ minሾ ௅ܸ௠଴, … , ௅ܸ௠௡ሿ, and the lower limit is defined 

as ௅ܸ௠
௅ ൌ maxሾ െ ௅ܸ௠଴, … ,െ ௅ܸ௠௡ሿ. For the positive direction of motion with ௠ܸ ൒ 0 only the upper 

limit ௅ܸ௠
௎ ൒ 0 has physical meaning. 

The equation of rollover speed ௅ܸ௠଴ for horizontal surface is obtained from sufficient equilibrium 
condition (equality of tipping and returning torques): 

௅ܸ௠଴ ൌ ට0.5ܾ݄ܽ݃௠ିଵ|ߖ஼
ିଵ|, (7) 

where ܽ and ܾ are accordingly track and wheelbase of the car (m); 
	݄௠ is the height of car’s mass center (m); 
݃ is the acceleration of gravity (m ∙ sିଶ); 
஼ߖ  is turn angle (rad). 



4

1234567890‘’“”

IASF-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 315 (2018) 012023 doi:10.1088/1757-899X/315/1/012023

 
 
 
 
 
 

The equation of front drift speed ௅ܸ௠ଵ is obtained from III Newton Law (equality of frictional forces 
on front wheels in lateral direction and half of total centrifugal force): 

௅ܸ௠ଵ ൌ ܴ݁ට2ሾ݉ଵଶܾ݃ െ ܴௗ ܽௗ்ሿ݇௦௤|ߖ௖
ିଵ|	൫m ∙ sିଵ൯, (8) 

where ݉ଵଶ ൌ ሺ݉ଵ ൅ ݉ଶ ሻ ∙ ݉଴
ିଵ is relative mass distribution on front wheels (݉ଵ  and ݉ଶ ) to the 

total car’s mass ݉଴ ;  
ܴௗ  is the dynamic radius of driving wheels (m);  
	ܽௗ் is traction-braking acceleration (m ∙ sିଶ); 
݇௦௤ is top value of wheel frictional coefficient in lateral direction. 

The equation of rear drift speed ௅ܸ௠ଶ is also obtained from III Newton Law (equality of frictional 
forces on rear wheels in lateral direction and half of total centrifugal force):  

௅ܸ௠ଶ ൌ ܴ݁ට2ሾ݉ଷସܾ݃ ൅ ܴௗ ܽௗ்ሿ݇௦௤|ߖ௖
ିଵ|	ሺm ∙ sିଵሻ, (9) 

where ݉ଷସ ൌ ሺ݉ଷ ൅݉ସ ሻ ∙ ݉଴
ିଵ is relative mass distribution on rear wheels (݉ଷ  and ݉ସ ) to the 

total car’s mass ݉଴ . 
Traction-braking acceleration ܽௗ் for (8) and (9) is defined from equation of linear movement: 

ܽ௠ ൌ ܽௗ் െ ݇௫ ݉଴
ିଵ

௠ܸ
ଶ െ ݇௥௙݃ െ ்ߙ ݃, (10) 

where ܽ௠ ൌ d ௠ܸ /dݐ is longitudinal acceleration of car’s mass center (m ∙ sିଶ); 
݇௫  is the coefficient of frontal aerodynamic drag (N ∙ mିଶ ∙ sଶ ); 

݇௥௙ is the coefficient of rolling resistance between tires and road; 

்ߙ  is pitch angle (rad). 
The values of tire lateral friction coefficient ݇௦௤ are related to the values of tire longitudinal friction 

coefficient ݇௦ௗ by Kamm circle [3,7]: 

ሺ݇௦௤ଶ ൅ ݇௦ௗ
ଶ ሻ ൑ ሺ݇௦∗ሻ

ଶ , (11) 

where ݇௦∗ is the top (maximum) value of resulstant friction coefficient. 
In this case, the value ݇௦௤ for one wheel is equal to:  

݇௦௤ ൌ ݇௦∗ඨ1 െ ൬
௞ೞ೏
௞ೞ
∗ ൰

ଶ

, (12) 

where ݇௦ௗ ൌ ܣ ∙ ݉଴ ∙ ܽௗ் ∙ ேܨ
ିଵ; 

 ;is the distribution coefficient of tractive-braking forces per wheel ܣ
ேܨ   is the normal component of the force per wheel. 
For the small values of module ܽௗ் and ܣ: ݇௦ௗ ≪ ݇௦∗ and ݇௦௤ ൎ ݇௦∗. 
The concept of optimal weighting follows from the equations of drift speed limits. The maximum 

speed at a turn for ௅ܸ௠ଵ ൏ ௅ܸ௠଴ and ௅ܸ௠ଶ ൏ ௅ܸ௠଴ is limited by ௠ܸ௜௡ ൌ minሾ ௅ܸ௠ଵ, ௅ܸ௠ଶሿ and it’s 
maximum value is achieved when ௅ܸ௠ଵ ൌ ௅ܸ௠ଶ. 

This condition is met when: 

݉ଵଶܾ݃ െ ܴௗ ܽௗ் ൌ ݉ଷସܾ݃ ൅ ܴௗ ܽௗ். 

Taking into account that ݉ଷସ ൌ 1 െ݉ଵଶ we obtain: 
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݉ଵଶ ൌ ܽௗ்ܴௗ ݃
ିଵܾିଵ ൅ 0.5 and 

݉ଷସ ൌ 0.5 െ ܽௗ்ܴௗ ݃
ିଵܾିଵ. 

For Mercedes-Benz E-Class ܾ ൌ 2.833	m, ܴௗ ൌ 0.3	m, ܽௗ் ൌ 3	m ∙ sିଶ at second gear we obtain 
݉ଵଶ ൌ 0.53; ݉ଷସ ൌ 0.47 which coincides with the technical data of these models. 

 
3.2.  Virtual sensors for turn angle and the additional component of yaw rate 
The indirect measurements of turn angle ߖ஼  and additional component ∆߱௠  of yaw rate allow to 
exclude from the system specialized sensors of steering wheel angle and angular velocity sensor. The 
indirect measurements are based on the incorrect problem solution of calculation variables in the 
equation system (accepted indexation of variables: 1, 3 correspond to the front and rear wheels of the 
port side; 2,4 correspond to the front and rear wheels of starboard): 

ە
ۖ
۔

ۖ
ۓ ଵܸ ൌ ௠ܸ ൅ 0.5ܾܽିଵ ௠ܸ ௖ߖ ൅ ∆ ௦ܸଵ ൅ 0.5ܽ ∙ ∆߱௠;

ଶܸ ൌ ௠ܸ െ 0.5ܾܽିଵ ௠ܸ ௖ߖ ൅ ∆ ௦ܸଶ െ 0.5ܽ ∙ ∆߱௠;

ଷܸ ൌ ௠ܸ ൅ 0.5ܾܽିଵ ௠ܸ ௖ߖ ൅ ∆ ௦ܸଷ ൅ 0.5ܽ ∙ ∆߱௠;

ସܸ ൌ ௠ܸ െ 0.5ܾܽିଵ ௠ܸ ௖ߖ ൅ ∆ ௦ܸସ െ 0.5ܽ ∙ ∆߱௠,

 (13) 

where ∆ ௦ܸଵ , ∆ ௦ܸଶ , ∆ ௦ܸଷ , ∆ ௦ܸସ  are longitudinal wheel slip speeds; 
	 ଵܸ , ଶܸ , ଷܸ , ସܸ  are linear wheel speeds. 
The transformation of this problem to the correct one is possible when introducing additional 

determining conditions corresponding to the properties of the object [4,8,10]. So for the pair of wheels, 
the difference ௜ܸ െ ௝ܸ ൌ ∆ ௜ܸ௝  (݅, ݆ ൌ 1,2; 3,4; 1,4; 3,2) is equal: 

∆ ௜ܸ௝ ൌ ܾܽିଵ ௠ܸ ௖ߖ ൅ ൫∆ ௦ܸ௜ െ ∆ ௦ܸ௝ ൯ ൅ ܽ ∙ ∆߱௠ . (14) 

Speed estimation for car’s center of gravity is ܸ෠௠ ൌ 0.5൫ ௜ܸ ൅ ௝ܸ ൯ ൌ ௠ܸ ൅ 0.5൫∆ ௦ܸ௜ ൅ ∆ ௦ܸ௝ ൯ and 

in the case ∆ ௦ܸ௜ ൌ ∆ ௦ܸ௝ ൌ 0: ෠ܸ௠ ൌ ௠ܸ .  

The solution (14) with respect to ߖ௖  taking into account the accepted assumptions is: 

௖ߖ ൌ ∆ ௜ܸ௝ ܽ
ିଵܾ ௠ܸ

ିଵ െ ܾ ௠ܸ
ିଵ∆߱௠ . (15) 

Taking ߖ෡௖ ൌ ∆ ௜ܸ௝ ܽ
ିଵܾ ௠ܸ

ିଵ, we obtain that: 

ቊ
෡௖ߖ ൌ ௖ߖ ൅ ܾ ∙ ௠ܸ

ିଵ ∙ ∆߱௠;							
∆߱௠ ൌ ܾିଵ ∙ ௠ܸ ∙ ൫ߖ෡௖ െ ௖ߖ ൯.

 (16) 

Taking into account the additional defining properties of the object in the part of the value and sign 
∆߱௠  in the form of conditions: 

൞

If	 ௠ܸ ൏ minൣ ௅ܸ௠ଵ, ௅ܸ௠ଶ൧ , then	∆߱௠ ൌ 0;																																							

If	 ௅ܸ௠ଵ ൐ ௅ܸ௠ଶ	and	 ௠ܸ ൐ ௅ܸ௠ଶ, then	݊݃ݏ൫∆߱௠൯ ൌ ෡௖ߖ൫݊݃ݏ ൯;		

If	 ௅ܸ௠ଶ ൐ ௅ܸ௠ଵ	and	 ௠ܸ ൐ гܸрଵ, then	݊݃ݏ൫∆߱௠൯ ൌ െ݊݃ݏ൫ߖ෡௖ ൯,

 (17) 

under ߖ௖ ൌ ෡௖ߖሺ݊݃ݏ௅௠ߖ ሻ we obtain: 

∆ ෝ߱௠ ൌ ൞

0, if	 ௠ܸ ൏ ௅ܸ௠ଵ	and	 ௠ܸ ൏ ௅ܸ௠ଶ;																																																													

ܾିଵ ௠ܸ ෡௖ߖൣ െ ෡௖ߖ൫݊݃ݏ௅௠ଶߖ ൯൧, if	 ௅ܸ௠ଵ ൐ ௅ܸ௠ଶ	and	 ௠ܸ ൐ ௅ܸ௠ଶ;				

െܾିଵ ௠ܸ ෡௖ߖൣ െ ෡௖ߖ൫݊݃ݏ௅௠ଵߖ ൯൧, if	 ௅ܸ௠ଶ ൐ ௅ܸ௠ଵ	and	 ௠ܸ ൐ ௅ܸ௠ଵ	.

 (18) 
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௅௠ߖ ൌ minሾߖ௅௠ଵ ௅௠ଵߖ ;௅௠ଶሿߖ, ൌ 2ሾ݉ଵଶܾ݃ െ ܴௗ ܽௗ்ሿ݇௦௤ ௠ܸ
ିଶ; 

௅௠ଶߖ ൌ 2ሾ݉ଷସܾ݃ ൅ ܴௗ ܽௗ்ሿ݇௦௤ ௠ܸ
ିଶ. 

 
3.3.  Dynamic stabilization system 
The dynamic stabilization system (DSS) includes ABS speed sensors, brake pedal actuator and control 
board with the program of processing and control. 

The braking deceleration ்ܽ  at the step is formed as ሾ ௠ܸ	௘ െ ௅ܸ௠	௘ሿ ∙ ∆ܶ
ିଵ, where ௠ܸ	௘ is 

extrapolated speed value of the car; ௅ܸ௠	௘ is the extrapolated value of the limit speed ௅ܸ௠	௘ ൌ
minሾ ௅ܸ௠଴	௘ , ௅ܸ௠ଵ	௘, ௅ܸ௠ଶ	௘ሿ; ܸ ௅௠଴	௘, ܸ ௅௠ଵ	௘, ܸ ௅௠ଶ	௘ are extrapolated with respect to the angle ߖ௖  values 
of rollover speed, front drift speed and rear drift speed. To compensate for the delay of about 1 s, 
introduced by the brake actuator, the extrapolation time is set at 2 s. 

Control actions are formed by power keys with PWM signals and PWM_T duty ratio in accordance 
with the calibrated characteristic ܹܲܯ_ܶ ൌ ݂ሺ்ܽ ሻ of the brake system with the actuator. 
Differentiation of the control action is performed programmatically to give the cascade connection of 
the actuator-braking system the proportional element properties [5,9,11]. The maximum deceleration 
value ்ܽ௠௔௫ is calculated depending on the identifiable top value of the sliding friction coefficient in 
order to prevent wheel blocking during braking. In the motion mode with activated adaptive cruise 
control, the set speed ௠ܸ௭ is defined as ௠ܸ௭ ൌ min	ሾ ௠ܸ௭଴, ௅ܸ௠଴, ௅ܸ௠ଵ, ௅ܸ௠ଶ, … , ௅ܸ௠ଽሿ and possible 
excesses ௠ܸ	௘ over ௅ܸ௠	௘ can’t be significant. 

 
3.4.  Experimental results  
DSS research tests were carried out for LADA Kalina car with electric traction in FSUE “NAMI” 
including NAMI’s Testing Centre. 

The total mass of the car with driver and passenger is ݉଴ ൌ 1280	kg, mass distribution on front 
wheels is ݉ଵଶ ൌ 0.5, the track is ܽ ൌ 1.42	m; the wheelbase is ܾ ൌ 2.461	m, the height of car’s mass 
center is ݄௠ ൌ 0.65	m, ݇௫ ൌ 0.51	N ∙ sିଶ ∙ mଶ , winter studless tires are Michelin X-
Ice 175/65 R14 82Q. 

 Test drives were conducted in a circle with the diameter of about 20 m on wet and dry asphalt, as 
well as during the passage of right and left turns with the radius of about 10 m with a change in the 
course angle by 90°. Figure 1 shows the time diagrams of car motion with disabled DSS at ݇௦∗ ൌ 0.58. 

The analysis of the test results shows that the resulting turn angle ߖ௖ , determined from the speeds 
of rear wheels with a fixed rudder position, decreases modulo as car speed increases, which corresponds 
to the side-drift effect due to non-zero lateral sliding of the wheels. The virtual sensor fixes positive 
∆߱௠  corresponding to the drift of front wheels at speed close to 8	m ∙ sିଵ, positive ܽௗ் and lateral 
acceleration (ܽ௤ ) greater than 6	m ∙ sିଶ, which does not contradict the theoretical data. 

Figure 2 shows the time diagrams of change car parameters at motion with enabled DSS, ݇௦∗ ൌ 0.58. 
The analysis of the results shows that the actuation of the braking system occurs during predicted 

excess of the limit speed, which ensures the absence of non-zero ∆߱௠ , speed stabilization at the level 
of 7	m ∙ sିଵand lateral acceleration stabilization at the level of 6	m ∙ sିଶ. 
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Figure 1. The time diagrams of car motion with disabled DSS on a circle. 
 

 

Figure 2. The time diagrams of car motion with enabled DSS on a circle. 

4.  Conclusion 
The dynamic stabilization problem for autonomous car has been formulated in terms of minimizing the 
quadratic functional for control quality, taking into account functional limitations on technical and 
economic indicators. 



8

1234567890‘’“”

IASF-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 315 (2018) 012023 doi:10.1088/1757-899X/315/1/012023

 
 
 
 
 
 

The analysis of conducted research confirms both the adequacy of the mathematical models, the 
algorithms and the possibility of implementing the system in the minimal configuration of technical 
means. 
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