
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

2017 Workshop on Materials and Engineering in Aeronautics (MEA2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 312 (2018) 012022 doi:10.1088/1757-899X/312/1/012022

Airborne data measurement system errors reduction through 

state estimation and control optimization 

G G Sebryakov
1
, S M  Muzhichek

1
, V I Pavlov

2
, O V Ermolin

2
 and  

A A Skrinnikov
1 *

 

 1
State Research Institute of Aviation Systems, Moscow, 125319, Russia 

2 
Tambov State Technical University, Tambov, Russia 

3 
Central Recearch Institute of the Air Force of the Ministry of Defense of the Russian 

Federation, Moscow region, Russia  

 

*E-mail: msm19@yandex.ru 

Abstract. The paper discusses  the problem of airborne data measurement system   errors 

reduction through state estimation and control optimization. The approaches are proposed  

based on the methods of experiment design and the theory of systems with random abrupt 

structure variation. The paper considers various control criteria as applied to an aircraft data 

measurement system. The physics of criteria is explained, the mathematical description and the 

sequence of steps for each criterion application is shown. The formula is given for airborne 

data measurement system   state vector posterior estimation based for systems with structure 

variations.  

  

1. Introduction. 

Airborne data measurement systems (DMS) are widely used in aviation. Irrespective of DMS type, 

sensor spectral band, design features, etc., one of major vehicle DMS requirements is the obtaining 

еру reliable information on current situation, as well as the timeliness of information.  

    Airborne DMS has the following parameters changing in a wide range: alternating vibration g-

loads, temperature, humidity and pressure due to various environmental conditions of vehicle 

operation. In addition, DMS is susceptible to interference in the spectral range of its sensors and to 

jamming. 

The paper proposes approaches  to improve  оnboard DMS functioning  for two cases: a fault-free 

properly functioning DMS and  a system with  errors. The causes of these errors can be both natural –

ageing and wear – and intentional – jamming. DMS state recognition in abovementioned conditions is 

a very urgent problem in radar, navigation and communication areas. Besides, it is advisable to solve 

this problem without normal system operation interruption. 

Let us consider the solution to the problem by the example of an airborne radar system.  

 

2. Statement of problem 

We consider an active airborne radar with passive response and an airborne digital computer as parts 

of an aircraft DMS. The aircraft task is to locate air vehicles, probably equipped with radar jammers. 

Because of ageing, wear and other adverse factors there might be gradual negative changes in DMS 

characteristics and its component features. The airborne radar may receive not only useful return 

signals but also deception signals, generated by jammers. It is essential to recognize the aircraft DMS 
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state, specifically, to find out whether DMS functions in a routine mode or in conditions of abnormal 

measurements due DMS  faults or jamming. DMS functioning in regimes of abnormal measurements 

is associated with possible changes of system structure. 

 

3. Method of system state recognition in inaccurate measurements 

The joint aircraft and airborne radar state n-dimensional X-vector characterizes center-of-mass motion 

kinematics, the dynamics of motion relative to the center-of-mass, radar and target relative 

positioning. It also includes   airborne radar basic states such as angular misalignment φ between 

aircraft axis and target direction; line of sight angular rate ω, aircraft velocity  relative to  the target V 

and distance to the target D. 

 In addition, aircraft constructive element bending vibrations, environmental parameters, etc. can be 

taken into account.  

Random inputs  and outputs are typical for airborne radars. Let’s consider an airborne radar 

observation model. In this case, a generalized measurement model can be presented in the form of  

m-dimensional vector Z and  random measurement noise vector N 

Z(t)=CХ(t) + D(t)N(t) 

where С - measurement matrix; N(t) – m-dimensional centered Gaussian white measurement  noise 

vector with correlation function KN(t,t1)=Q(t)δ(t-t1);  Q(t) – measurement noise intensity matrix; δ(t-t1) 

– Dirac function, D(t)- noise amplification matrix.  In cases of failures and abnormal measurements 

caused by other reasons  the matrix D(t)>>I;  for uninformative measurements measurement matrix С 

– zero matrix, D (t) – unity matrix; in deception jamming environment  vector X(t) is influenced by the 

jamming signals. 

The generalized object model for joint aircraft and airborne radar state  vector we use in the form of 

a variable structure model [1] 

( ) ( ) ( )

1 , 1 ,   X X U
s s s

k k k k k k k kФ B F ξ     (1) 

where kX  - joint aircraft and airborne radar state  vector; ( )

, 1

s

k kФ  – aircraft and radar state transition 

matrix; k – discrete current time;  s – index, corresponding to the aircraft and radar structure number , 

active in k time moment; 
( )s

kF - specified matrices which components are the functions of measurement 

vector;  Uk – aircraft control vector relative to a selected target; 
kξ - centered discrete Gaussian noise 

vector with correlation function matrix ( , )  k khk h K G , h – time moment different from k; Gk – 

aircraft state noise intensity matrix; kh  - Kronecker delta. 

For variable structure airborne radar measurements can be written in the form [3] 

( ) ( )( , ) ; Z X
s s

k k k k k k kC μ γ N ζ       (2) 

( )

1 1 0 0
ˆ( , ), , 1, ,   s

k k k kf k K μ μ γ      (3) 

where Zk –measurement vector; 
( )( , )s

k k kC μ γ - non-random measurement matrix that is a function of k 

и k, parameters, defining measurement conditions in s-th structure; k – measured parameters set 

matrix; k - measurement process control vector with limitations 

Г , ( ) k K kg gγ μ .     (4) 

In (2)-(4) function 
( )

1 ( ), s

kf  ( )kg μ , g  value and Гk set – are specified initial parameters; 
( )s

kN  – 

specified matrix; 
kζ  – measurement noise vector; i.e. centered discrete Gaussian noise vector with 

correlation function matrix ( , )  k khk h K Q , Qk – measurement noise intensity matrix; 
0 0

ˆ,   - 
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respectively, measured parameters and their estimates at the initial moment of normal system 

operation. 

In countermeasures environment measurement vector errors might be taken into account using 

measurement control procedure, in this case radar measurement vector components are formally 

presented in the form  

φ + ∆φ;   ω + ∆ω;   V + ∆V;   D + ∆D, 

that is 

Х = Х + ∆Х.       (5) 

It is assumed that ∆Х components gradually change from zero to maximum values, which are 

individual for every parameter. Let’s consider measurement control problems for specific control 

types {k} [3]. 

 

4. Measurement control problems. Measurement program (mode) selection 

In measurement program selection k and k are scalar parameters. Гk set  consists of two elements: 

Гk = {0, 1}, we assume k = 1, if at the moment k the measurement is made; k = 0, if there is no 

measurement. Then equation (3) for s-th structure can be written as 

1μ μ γ , k k k
 0 = 0 

with limitations 

1

,


 
K

K k

k

K   

where 
K  – a specified number of measurements. 

In equation (2) 

( ) ( )( ,γ ) γ ,s s

k k k k kC μ C  

where 
( )s

kC  – sensitivity of measurement channel in s-th structure. 

5. Measured parameter combination selection 

When selecting parameters for measurement in the equation (3) we formally write down k = k, and 

measurement matrix in (2)  

( )( , ) .s

k k k kC μ γ  

Thus, matrix control Гk Kγ  specifies the combination of measured parameters, and Гk set is a 

potentially possible parameter combination. 

 

6. Onboard DMS position (flight path) selection  

In some cases, we may enhance measurement system  efficiency through better operating conditions. 

For example, we may form the aircraft flight path in order to reduce airborne radar measurement 

errors. 

In such a case the model (1) – (3) can be written as:  

( ) ( ) ( )

1 , 1 ( )   X X X U
s s s

k k k k k k k k kФ B F ξ ;     (6) 

( ) ( )( , ) Z X U X
s s

k k k k k k kC N ζ ;      (7) 

( ) ( ) ( )

0

1

( , ) ( ) ( ) ,


 X U U U X
n

s s s

k k k k k jk k k

j

C cC     (8) 
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where ( )

0

s

kC ( Uk) -  nonlinear functions; ( )s

jkc  – statistical linearization coefficients for centered state 

variables. ( )

0

s

kC  and ( )s

jkc  are calculated according algorithms [4] with the use of Gaussian 

approximation of posterior probability density [5] and depend on Uk control inputs, posterior 

mathematical expectations ( )
X̂

s

jk
 and noise intensity matrices Gk and Qk. 

The additional component in the model (6) – (8) is the control optimization procedure Uk in 

accordance with a pre-validated criterion. For example, if the measurement control purpose is just 

filtering quality improvement, then we shall consider average losses as an “information” criterion  

 
1

ˆ ˆ ˆ ˆ( ) Ψ( , ) Ψ , ( ) ;



 

  
   I X X X X X X X

S

k k k k k k

s

М p d    (9) 

 
2

1

ˆ ˆΨ , ,


  
 X X X X

n

k k jk jk

j

    (10) 

where М [] – mathematical expectation operation;  ˆΨ ,X Xk k  – quadratic loss function; ˆ ( )Xkp  – 

posterior probability density of state vector X.  

If the purpose of measurement control is the simultaneous filtering quality enhancement and 

airborne measurement characteristics improvement through flight path optimization, then the problem 

of aircraft conrol should be solved according to a generalized “information and geometric factor” 

criterion  

     ˆ ˆ ˆ ; J X I L Xk k k X      (11) 

 
2

опт
ˆ ˆ ,  

 
L X X Xk k     (12) 

where  and  –coefficients weighting the requirements for X vector filtering accuracy and optimal 

positioning of airborne radar relative to a selected target. With that  ˆI X k  is determined according to 

(9), (10); Xopt – aircraft  state vector  providing optimal measurement conditions for a selected target.   

The solution of this problem necessitates aircraft position control in accordance with the rule  

max max

о. у max

max max

, при ;

, при ;

, при ,




 
 

U U U

U U U U

U U U

k

k k

k

 

where о. уU  is a control input determined according to the methodology [6],  ensuring that airborne 

radar location is a compromise between two  goals reflected in the criterion (11). Umax – control input 

maximum value. 

For simultaneous stability in the intersensor interference environment and the required filtering 

quality an airborne radar optimization should be carried out in accordance with the following criterion  

     ˆ ˆ ˆ , , ; F X I X X Z Uk k k k kМ     (13) 

  ( ) ( )ˆ ˆ ˆ ˆ, , Ψ( , ) ( ) ( , , ) ( ) ;

 

 

  X Z U X X X X X Z U X X
s s

k k k k k k k kM p d p d   (14) 

( )

( ) ( ) ( )

( )
, 1

( , , ) ( , ) ( , ) ,


        X Z U Z X Z X

sn
lqs s s

k k lk k k k k qk k k ks
l q

Q
    C C

Q
 (15) 
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where l, q – indices of airborne radar state vector components; ( )s

lqQ  – algebraic complement of 

element lqQ  in the determinant 
 s

Q  of measurement system noise matrix. In this case, the control 

becomes two-level [7]. The first-level control is carried out  according to the criterion (14) for each s-

th structure, and  results in the selection of the best  s number. At the second level, the problem of 

filtering quality improvement is solved in accordance with the criterion (9).  

The estimation of a DMS  state vector  is  based on the posterior probability density ( )ˆ ( )X
s

kp  of an 

aircraft state vector in the s-th structure which is determined by the Bayes’s rule based on the prior 

probability density ( ) ( )X
s

kp  and Zk measurement: 

 

 

( )

( )

( )

1

( )exp 0,5 ( , , )
ˆ ( ) ,

( )exp 0,5 ( , , )



 

  

   

X X Z U
X

X X Z U X

s s

k ks

k S
s s

k k

s

p
p

p d





   (16) 

7. Conclusion 

Thus, the problem of reduction an airborne DMS errors is discussed  for two mostly typical cases:; 

operational flight with properly functioning system and  DMS use in jamming environment. In the first 

case the problem is solved traditionally based on the criterion (9),  the aircraft flight path  optimization 

may also be introduced  in accordance with (12) and minimizing the  criterion (11); in the second case 

– it is necessary to determine possible jamming effects according to the criterion (14) and with that to 

provide the required filtering quality in accordance with the criterion (13). The problem solution is 

based on the  joined aircraft-DMS  state vector  ,Xk ks  posterior probability estimation using the 

theory of systems with random abrupt structure variation [7]. 
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