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Abstract. In this paper we design a nonparametric method for failures diagnosis in the aircraft 

control system that uses the measurements of the control signals and the aircraft states only. It 

doesn’t require a priori information of the aircraft model parameters, training or statistical 

calculations, and is based on analytical nonparametric one-step-ahead state prediction 

approach. This makes it possible to predict the behavior of unidentified and failure dynamic 

systems, to weaken the requirements to control signals, and to reduce the diagnostic time and 

problem complexity. 

1. Problem setting for fault diagnosis 

Let the models of a non-failure and failure aircraft dynamic be represented in the state space as 

 1i i ix Ax Bu   , (1) 

 1

f f

j j f jx Ax B u   , (2) 

where 0, 1, , 1,...i l j l l     are the discrete times before and after the occurrence of failures; l  is the 

instant a failures occur; , fx x  are the non-failure and failure aircraft state vectors of length xn ; u  is 

the control vector of length; A , B  are the matrices of eigen-dynamics and control efficiency; 

fB BF  is the control efficiency matrix of the failure aircraft;    diag 1 (2) uF f f f n     is the 

matrix of failures, (*) 1f   for the non-failure control channels, 0 (*) 1f   for the failure control 

channels. It is necessary, based on the measurements of control signals u  and states x  only, to 

diagnose the failures in aircraft control system by determining the residuals in aircraft control 

efficiency parameters fB B B   . These residuals can be very useful for subsequent failure 

compensation by means of a aircraft control system reconfiguration [1–2]. 

There are two different approaches to solution of this problem [3–8]. The first approach is based on 

identification of B  and fB  directly from (1)–(2) with subsequent computation of B . The main 

challenge of this approach is the unidentifiability of aircraft model parameters without special test 

signals and a priory information [9–11]. So, the simplest way to solve failures diagnosis problem is to 

use parametric one-step-ahead prediction approach with the help of known estimations Â , B̂ : 

 1
ˆ ˆˆ

i i ix Ax Bu   , (3) 
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 1
ˆ ˆˆ f f

j j jx Ax Bu   . (4) 

Then we can calculate the difference between real (2) and predicted (4) failure aircraft state values 

    1 1 1
ˆ ˆˆ ˆ ˆf f f f f f

j j j j j f f jjj jB u Bux x x Ax Ax A B B uA x            . (5) 

If the aircraft model parameters are known exactly, then Â A , B̂ B , ˆ 0A  , B̂ B   , and B  

due to (5) can be easily derived from simple equation 

 1
ˆ f

jjBu x    . (6) 

The main problem of the parametric prediction methods is that they require a priori information about 

the model parameters, which may be uncertain or even completely undefined. 

 

2. The solution of failures diagnosis problem by the nonparametric prediction method 

Widely known nonparametric prediction methods (neural networks, cellular automata, Markovian, 

chaotic, etc.) require preliminary training/tuning for a particular system or based on statistical 

algorithms, which use a sufficiently large sample of measurement data for the statistical properties 

extraction [12–15]. Therefore, such methods are not applicable, for example, for maneuverable aircraft 

evolution prediction. However, the main disadvantage of the known non-parametric prediction 

methods is that they can’t be easily applied to solve one-step-ahead state prediction problems for 

systems with failures. In this paper we propose to solve the problem by analytical nonparametric 

prediction method, which is not subject to model errors, do not use statistical calculations, do not 

require training, and can be used to predict unidentified and failure dynamic systems. 

Let’s write the one-step-ahead prediction expressions (3)–(4) in the matrix form 

 1
ˆˆ ˆ

i i iX AX BU   , 1
ˆˆ ˆf f

j j jX AX BU   , (7) 

where  ...i i i hU u u  , ... fj j j h
U u u


 
 

,  ...i i i hX x x  , ... f

f f f

j j j h
X x x


 
 

,  1 1 1
ˆ ˆ ˆ...i i i hX x x    , 

1 1 1
ˆ ˆ ˆ... f

f f f

j j j h
X x x   

 
 

. Note that, in contrast to the modeling problems (1)–(2), the one-step-ahead 

prediction problems (7) can be written by the single seamless block matrix expression 

 1 1
ˆˆ ˆ ˆ

f

i jf

i j

i j

X X
X X A B

U U
 

 
       

  
. (8) 

Let’s rewrite (8) to the form of parameters estimation equation 

 1
ˆ ˆ ˆk

k

k

X
A B X

U


 
     

 
, (9) 

where k i  before and k j  after the occurrence of failures; *...k k k h
X x x


    , *1

ˆ ˆ ˆ...k k k h
X x x 

    , 

*...k k k h
U u u


    ; *h h  for 0: 1k l   and * fh h  for k l . 

It’s known [2, 16, 17], that any linear matrix equation of the form YC D  with known matrices C  

and D  is solvable for Y  if and only if the solvability condition holds 

 0RDC  , (10) 

and all set of its solutions is defined by a formula 
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L

C
X DC DC C

C

 
      

 
, (11) 

where   is an arbitrary matrix; LC , RC  are the left and right zero divisors of maximal rank (matrices 

for which conditions 0LC C  , 0RCC   are satisfied); 
LC , 

RC  are the left and right unity divisors 

( )L RC CC I ; 
R LC C C  is the generalized inverse matrix defined by a canonical decomposition 

1
10

0 0

L
R R

L

IC
C C C

C


   

       
  

. 

Subject to (10) the equation (9) is solvable if and only if 

 1
ˆ 0

R

k

k

k

X
X

U


 
 

 
. (12) 

The condition (12) is fulfilled for any moment of time and can be used to solve the one-step-ahead 

state prediction problem. Let’s write the estimation equation (9) in form: 

  
* *

* *

* *

1

1 1

1

...
ˆ ˆ ˆ...

...

k k h k h

k k h k h
k k h k h

x x x
A B x x x

u u u
  

   

  

 
     

 
, (13) 

then the solvability condition (12) can be written as an expression 

 
* *

* *

* *

1

1 1

1

...
ˆ ˆ ˆ... 0

...

R

k k h k h

k k h k h
k k h k h

x x x
x x x

u u u
  

   

  

 
    

 
, (14) 

where 
*h  is the minimum number of observations for which the right zero divisor has the form of a 

column vector: 

 
* *

* *

1

*

1

*

(1)

...
0

... ( )

( 1)

k

k k h k h

k kk h k h

k

r

x x x

u u u r h

r h

  

  

 
 

 
   
     

  

. (15) 

Hence the condition (14) takes the form 

 * *1 *1

*

(1)

ˆ ˆ ˆ... 0
( )

( 1)

k

k k h k h

k

k

r

x x x
r h

r h

   

 
 
      
 

  

, (16) 

that can be rewritten as an equation 

 * *

*

11
*

(1)

ˆ ˆ ˆ( 1) ...

( )

k

k kk h k h

k

r

x r h x x

r h

  

 
 

      
  

. (17) 

From (17) the next value of the state vector can always be uniquely defined by expression 
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11
*

(1)

ˆ ˆ ˆ... / ( 1)

( )

k

k kk h k h

k

r

x x x r h

r h

  

 
 

      
  

, (18) 

where the invertibility of 
*( 1)kr h   is guaranteed according to (15) by the condition 

 1

1

(1)
...

0
...

( )

f

f

k

k k h

k k h
k

r
x x

u u
r h

 

 

 
   

   
    

 

. (19) 

Expression (18) is indeed a universal one-step-ahead prediction problem solution in the absence of 

errors in the model parameters ( ˆ ˆ,A A B B  ) for both non-failure (3) and failure (4) cases. 

Then to diagnose the failures we have to make several simple steps. 

1. For 1:k h  we need to collect non-failure observations to fulfill the condition (15). 

2. For 1:k h l   we predict the non-failure aircraft dynamics ˆ
kX  by (18) with *h h . Note that 

in the absence of failures the condition ˆk kx x is always satisfied for non-failure case. 

3. For 1k l   the predicted state does not equal to real one 
1 1

ˆ
l lx x  , so we can conclude that 

there is a failure in the aircraft control system. 

4. For 1: fk l l h    we predict the failure aircraft dynamics ˆ f

kX  by (18) with * fh h , and 

estimate the difference 1 1 1
ˆf f f

k k kX X X    . 

5. The last step is to solve the equation of the form (6): 

 1

f

kkU XB    . (20) 

Due to (10) the equation (20) is solvable if and only if 

 1 0f R

k kX U  , (21) 

and due to (11) the set of all its solutions is defined by a formula 

 1

f L

k kk UXB U   , (22) 

where   is an arbitrary matrix. The fulfillment of the solvability condition (21) is always guaranteed 

in the absence of disturbances and can be used to control the computations. 

From (22) it follows that in order to obtain a unique failures diagnosis problem solution 

 1

f

jjB UX    , (23) 

it's necessary and sufficient to ensure the linear independence of rows in the control matrix ( 0L

jU  ), 

that is required for all failures diagnosis methods [18, 19]. 

Figure 1 shows the implementation scheme of the proposed failures diagnosis method. 
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Figure 1. Failures Diagnosis Scheme. 

3. Conclusion 

The designed method refers to model-based nonparametric methods based on the analysis of input and 

output signals only and has the following advantages: it doesn’t require a priori information about the 

model parameters, thus there are no any parametric errors; it’s applicable for failures diagnosis in 

unidentifiable dynamic systems; it can reduce the diagnostic time and problem complexity due to no 

need of identifying the eigen-dynamics parameters; it weakens the requirements to control signals by 

ensuring only the independence of the controls with no need of exciting all oscillation modes of 

model. 
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