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Abstract. In the case of Tresca’ solids (i.e. solids obeying the Tresca yield criterion and its 

associated flow rule) ideal flows have been defined elsewhere as solenoidal smooth 

deformations in which an eigenvector field associated everywhere with the greatest principal 

stress (and strain rate) is fixed in the material. Under such conditions all material elements 

undergo paths of minimum plastic work, a condition which is often advantageous for metal 

forming processes. Therefore, the ideal flow theory is used as the basis of a procedure for the 

preliminary design of such processes. The present paper extends the theory of stationary planar 

ideal flow to pressure dependent materials obeying the double shearing model and the double 

slip and rotation model. It is shown that the original problem of plasticity reduces to a purely 

geometric problem. The corresponding system of equations is hyperbolic. The characteristic 

relations are integrated in elementary functions. In regions where one family of characteristics 

is straight, mapping between the principal lines and Cartesian coordinates is determined by 

linear ordinary differential equations. An illustrative example is provided.  

1. Introduction 

Ideal plastic flows are those for which all material elements follow minimum work paths [1]. This 

theory has been fully developed for the constitutive equations comprising the Tresca yield criterion 

and its associated flow rule [2]. A comprehensive overview of the ideal flow theory has been provided 

in [3]. Recently, the existence of stationary planar ideal flow solutions has been proven for models of 

anisotropic and pressure – dependent plasticity [4, 5]. In particular, the model of anisotropic plasticity 

proposed in [6] has been adopted in [4] and the double slip and rotation model of pressure – dependent 

plasticity proposed in [7] has been adopted in [5]. The ideal flow theory is used as the basis of 

procedures for the direct preliminary design of forming processes. A number of such design solutions 

have been developed in [8 - 13]. In the case of stationary ideal flows, the distribution of plastic strain 

in the final product is uniform. Moreover, the distribution of the damage parameter is uniform for 

certain damage evolution laws [14, 15]. The present paper develops a method for constructing a class 

of stationary planar ideal solutions for the double – shearing model of pressure – dependent plasticity 

proposed in [16]. This model has been originally proposed for soils. However, it has been shown (see, 

for example, [17]) that it is adequate for some metallic materials as well. 
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2. Ideal flow conditions 

In the case of the constitutive equations comprising the Tresca yield criterion and its associated flow 

rule, the principal stress and strain rate directions coincide. The ideal flow condition demands that the 

trajectories of the greatest (algebraically) principal stress (and strain rate) are fixed in the material [2]. 

In the case of plane strain deformation, the trajectories of both principal stresses (and strain rates) in 

planes of flow are fixed in the material. Therefore, the principal lines coordinate system is Lagrangian 

and solving the boundary value problem of plasticity reduces to a purely geometric problem [18]. In 

the case of stationary flows, the aforementioned general ideal flow condition requires that the 

trajectories of the greatest principal stress coincide with streamlines. Solving plane strain problems 

also reduces to a purely geometric problem [19]. A proof of the existence of stationary bulk planar 

ideal flows for the double slip and rotation model proposed in [7] has been given in [5]. However, no 

method for finding solutions has been developed. The model proposed in [7] is based on the Mohr - 

Coulomb yield criterion and a non-associated flow rule. The principal stress and strain rate directions 

do not coincide in this model. It has been shown in [5] that the ideal flow condition is that the 

trajectories of one of the principal stresses in planes of flow coincide with streamlines. It is evident 

that the ideal flow condition is an additional equation to the standard system of equations of this or 

that theory of plasticity. However, the proofs of the existence of ideal flows [2, 5, 20] demonstrate that 

the system of equations comprising the standard constitutive equations and the ideal flow condition is 

compatible. The difference between the ideal flow solutions and the standard solutions in plasticity 

lies in boundary conditions. In particular, not all of standard boundary conditions are compatible with 

the ideal flow condition. In the case of stationary flows, tool surfaces should be frictionless. Moreover, 

the shape of tool is not fully arbitrary and the design problem is to find such a shape that an ideal flow 

solution exists. 

3. Material model 

The double shearing model has been proposed in [16] for soils. Later, it has been shown that this 

model can be used for metallic materials as well [17]. Under plane strain conditions, the constitutive 

equations of the model are the Mohr - Coulomb yield criterion and the flow rule. In an arbitrary 

orthogonal coordinate system  ,   these equations can be written as 

    
2 2sin 4 2 cosk                (1) 

and   

    0, sin 2 2cos2 2sin 0.d dt                     (2) 

Here  ,   and   are the components of the stress tensor referred to the  ,   coordinate 

system,  ,   and   are the components of the strain rate tensor referred to the  ,   coordinate 

system,   is the only non-zero spin (vorticity) component referred to the  ,   coordinate system, 

  is the angle between the    direction and the greatest principal stress measured from the    

direction anti-clockwise, d dt  denotes the convected derivative, k is the cohesion, and   is the angle 

of internal friction. The existence of stationary bulk planar ideal flows has been proven in [5] for the 

double slip and rotation model proposed in [7]. It is possible to show that this proof is valid for the 

double shearing model as well. The constitutive equations of the double slip and rotation model are the 

Mohr - Coulomb yield criterion (1) and the flow rule in the form   

    0, sin 2 2cos2 2sin 0.                    (3) 

Here    is the intrinsic spin due to grain rotation. Stationary planar ideal flows for the double slip and 

rotation model exist if 0  [5]. Consider the second equation in (2) and choose the  ,   
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coordinate systems such that its    coordinate curves are everywhere coincident with streamlines. 

The ideal flow condition is that the trajectories of one of the principal stresses in planes of flow are 

everywhere coincident with streamlines. Therefore, 0   or 2   everywhere. In either case, 

0d dt   everywhere. Therefore, the second equation in (2) coincides with the second equation in (3) 

at 0  and the models coincide under the ideal flow condition. Hence, the solution given below is 

valid for both models. 

4. System of equations 

Let h  and h  be the scale factors for the    and    coordinate curves, respectively. The 

coordinate curves of this coordinate system coincide with trajectories of the principal stresses,   and 

 . Assuming that     it has been shown in [21] that the scale factors satisfy the equation   

 1bh h    (4) 

where    1 sin 1 sinb     . Any orthogonal net satisfying (4) determines a net of principal stress 

trajectories giving a solution to the Mohr-Coulomb yield criterion and the equilibrium equations. Then, 

it has been shown in [5] that the flow rule (3) at 0  and the ideal flow condition are satisfied if   

 1uh   (5) 

where u is the magnitude of the velocity vector. According to the ideal flow condition the velocity 

vector is tangent to the   coordinate curves. It is evident that the problem of finding an ideal flow 

solution is equivalent to the problem of finding a coordinate system satisfying (4). It follows from the 

geometry of Figure 1 that 

 cos , sin , sin , cos .
x x y y

h h h h      
   

   
    

   
 (6) 

 

Figure 1. Principal lines and Cartesian coordinates. 

 

The compatibility equations are   

 
2 2 2 2

, .
x x y y

       

   
 

       
 (7) 

Substituting (6) into (7) and using (4) and (5) yields  
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1

2

1

2

sin cos
cos sin ,

cos sin
sin cos .

b b

b b

u u
bu u

u u

u u
bu u

u u

   
 

   

   
 

   





   
  

   

   
   

   

 (8) 

It is always possible to rotate the Cartesian coordinate system so that its x- axis is tangent to the  

coordinate curve at a given point. In this case 0   and equation (8) becomes   

 
20, 0.b bu u

bu u
 

   

   
   

   
 (9) 

Using a standard procedure it is possible to show that this system of equations is hyperbolic with the 

characteristics  

 
1 1, .b bd d

bu bu
d d

 

 

     (9) 

Here the first equation determines the family of    curves and the second equation the family of    

curves. The characteristic relations are   

 0, 0.bdu ud bdu ud      (10) 

Here the first equation is valid on the    curves and the second equation on the    curves. It 

follows from (4), (5), and (9) that the angle between the    direction and each of the characteristic 

directions is 4 2   (Figure 2). Equations (10) can be immediately integrated to give   

    1 2ln , ln .b u g b u g          (11) 

Here  2g   is an arbitrary function of  and  1g   is an arbitrary function of . Solving (11) for u 

and  yields   

        2 1 2 12 ln , 2 .b u g g g g         (12) 

 

Figure 2. Characteristic coordinates. 

 

In what follows, it is assumed that the characteristic lines of one family are straight. This is an 

important class of solutions. In particular, the rigid plastic boundary is a straight line if the motion of 
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the rigid zone is a translation. For definitiveness, assume that the    lines are straight. Let   be the 

angle between the x – axis and the    direction measured from the x – axis anti-clockwise. Then, it is 

evident that 4 2       
and that the angle   is independent of . Therefore, the angle   is 

also independent of  and it follows from (12) that  2 02g g   is constant. Different choices of the 

function  1g   merely change the scale of the   curves. Therefore, without loss of generality it is 

possible to choose that  1 2g   . Hence equation (12) becomes   

 0 0ln , .b u g g       (13) 

5. Ideal flow solution for tool design 

A schematic diagram of the process is shown in Figure 3. There are two rigid regions and one plastic 

region. The motion of each rigid region is a translation. Therefore, the rigid plastic boundaries, OC 

and AB, are straight lines. The channel is converging in the direction of flow. Therefore, it follows 

from the geometry of Figures 2 and 3 that the rigid plastic boundaries are    lines and equation (13) 

is valid in the plastic region. The tool surface OA  and the thickness of the sheet at the exit are 

prescribed and the tool surface BC  that produces an ideal flow should be found from the solution. The 

origin of the Cartesian coordinate system is chosen at point O. The solution can be found by a purely 

geometric method. The equation of curve OA is given in parametric form as  

    , .x X y Y    (14) 

 

Figure 3. Schematic diagram of the process. 

 

Without loss of generality, it is possible to assume that 0   at point O. Then,   

 0 and 0X Y   (15) 

at 0  . Since curve OA is an    line, the orientation of the straight    lines in the plastic region is 

known (Figure 2). In particular, the equation of these lines is 

     tan
4 2

OAy Y x X
 

  
 

        
 

 (16) 
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where 
OA  is the value of  on curve OA. Using trigonometric relations equation (16) can be 

transformed to  

    
tan

1 tan

OA

OA

m
y Y x X

m


 



 
        

 (17) 

where  tan 4 2m    . Using (14) it is possible to find that   

  
1

tan .OA

dY dX

d d
  

 



  
   
  

 (18) 

The curve BC is also an    line. Therefore, the equation of this curve is   

  tan .OA

dy

dx
     (19) 

Differentiating (17) with respect to   and using (18) leads to   

  
1

dy dY dx dX m
x X

d d d d m



    

   
       

  
 (20) 

where   

  
 
 

2

2

1
.

1

md

d m




 


 


 (21) 

Equation (19) can be rewritten as   

 .
dy dx

d d


 
  (22) 

Eliminating the derivative dy d  in (20) by means of (22) yields   

 
2 2 2

1 1
.

1 1 1

dx m dY m m dX
m x X

d d d

  

     

        
           

        
 (23) 

This is a linear differential equation for x. Its general solution can be found without any difficulty. 

Using (19) equation (17) can be rewritten as   

  
1 m

x X y Y
m





 
    

 
 (24) 

Differentiating this equation with respect to   leads to   

  
1dx dX dy dY m

y Y P
d d d d m



    

   
      

  
 (25) 

where   

  
 
 

2

2

1
.

md
P

d m




 


 


 (26) 

Eliminating the derivative dx d  in (25) by means of (22) yields  
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2 2 2

1
.

1 1 1

dy m dX m m dY
m yP YP

d d d

  
  

     

        
         

        
 (27) 

This is a linear differential equation for y. The solution of equations (23) and (27) determines the 

shape of BC. The thickness of the sheet at the exit is denoted by H. Therefore, the boundary conditions 

to equations (23) and (27) are 

 
 
 

 
 

0 0sin 4 2 cos 4 2
and

cos 4 2 cos 4 2

H H
x y

     

   

   
  

 
 (28) 

at 0  , respectively. Here 
0  is the value of 

OA  at 0  .  

6. Illustrative example 

Assume that curve OA is a parabola (Figure 3). Taking into account (14) and (15) its equation can be 

written as  

     2,X Y n      (29) 

where n is constant. Then, it follows from (18), (21) and (26) that  

 
 

 

 
 

2 2

2 2

2 1 2 1
2 , , .

1 2 2

n m n m
n P

mn n m
 

 

 
    

 
 (30) 

Substituting (29) and (30) into (23) yields  

 
 

    
 

 

2

2 2 2 2

2 1 21
1 .

1 24 1 1 2 1 4

n m x m ndx

d mnm n nm m n



   

 
   

  
 (31) 

It follows from (30) that 0 0  . The solution of equation (31) satisfying the boundary condition (28) 

at 0 0   is   

 

   

 
 

 
 

 

2 2

2 2

2 2

0

1 2 arctan 2
exp

1 4

arctan 2 21 4 1
tan exp 1 .

4 2 1 2 1 2 1 4

mn n
x

mn

nz m nzn z
H dz

mnz m mnz m n z



 



 

  
  

  

      
        

         


 (32) 

Here z is a dummy variable of integration. Substituting (29) and (30) into (27) yields  

 
 

  

 
  

2 2 2 2 3 32 2

2 2 2 2

2 2 2 1 3 84 1
.

4 1 2 1 4 2

n m nm m n mnn m ydy

d m n m n m n m n

   

    

       
   

 (33) 

The solution of this equation satisfying the boundary condition (28) at 0 0   is    

 

 
 

   

 

2 2

2 2 2 2 3 3

3 2
2 2

0

arctan 21 42
exp

2

2 2 1 3 8arctan 2
exp .

21 4

nnn
y

m m n m

m nmz m n z mn znz Hm
z dz

m nn z







 
   

  

           
   



 (34) 

Equations (32) and (34) determine curve BC in parametric form with   being the parameter. 
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7. Conclusions 

The theory of planar bulk ideal flows for tool design has been developed assuming that one family of 

characteristic curves is straight. The theory is valid for both the double – shearing model [16] and the 

double slip and rotation model [7] of pressure-dependent plasticity. Finding an optimal tool shape has 

been reduced to solving linear ordinary differential equations. An illustrative example has been given 

assuming that one surface of tool is determined by equation (29) and that the motion of each rigid 

region is a translation. Then, the other surface is determined from the solution and is given by 

equations (32) and (34). It is seen from these equations that the solution is practically analytic. A 

numerical technique is only necessary to evaluate ordinary integrals. 
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