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Abstract. A 3D printing was successfully used to fabricate samples of Polylactic Acid (PLA). 

Processing parameters such as Lay-up speed, Lay-up thickness, and printing nozzle were 

varied. All samples were tested for flexural strength using three point load test. A statistical 

mathematical model was developed to correlate the processing parameters with flexural 

strength. The result clearly demonstrated that the lay-up thickness and nozzle diameter 

influenced flexural strength significantly, whereas lay-up speed hardly influenced the flexural 

strength. 

1. Introduction 

Fused deposition modeling (FDM) is one of the fast-growing rapid prototyping (RP) technologies. 

This technology helps designers to visualize a 3D digital model into a physical part of any complex 

shape and can be fabricated by the tool-less manufacturing with less manufacturing time and cost. [1–

5]. Hence, RP is a powerful technology to manufacture full-scale models that have not gained much 

consideration because of compatibility of available materials [6, 7]. This FDM technology is 

introduced by STRATASYS Inc., in 1990’s. A low-cost 3D printer are introduced with the same 

technology (FDM) and called as 3D printing. In this 3D printing technology, more than twenty 

thermoplastic materials are used for the manufacturing of engineering and medical components. 

Acrylonitrile butadiene styrene (ABS) and Polylactic Acid (PLA) are the most commonly used 

thermoplastic material in 3D printers. But PLA is degradable with carbon dioxide (CO2), water (H2O) 

and humus so it is called green polymer material. PLA materials are extracted from renewable 

resources, such as corn-starch, sugar cane, tapioca roots or even potato starch. The filament 

manufactured from PLA is low cost, superior in strength and has a lower melting point compared to 

ABS. Due to the above advantages, PLA material is considered for the present study.  

FDM process is simple and economical to produce components with high quality. However, light 

weight and high specific mechanical properties are a major concern. For parametric analysis and 

empirical modeling of the process, a central composite design (CCD) methodology is used to reduce 

the number of experiments and to study the effect of parameters including their iteration [9]. Extensive 
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research is done to investigate the effect of layer thickness in the field of FDM. F Rayegani et al. [10] 

have studied four process parameter (part orientation, air gap, raster angle and raster width) with 

differential evolution methodology to predict the optimal process parameters to attain best tensile 

strength. The mathematical model of the surface response of the tensile strength with respect to the 

different process parameters is studied. It is observed that the orientation and raster angle affects the 

tensile strength of the FDM part considerably when compared to other parameters. Liu Xinhua et al. 

[11] have recorded the five process parameters (layer thickness, fill speed, nozzle temperature, fill 

style, and raster width) to predict the accuracy (of what physical property measurement?) of the thin 

plate a portable non-contact 3D laser scanner experimentally. Two analytical methods are used to 

optimize the process parameters to reduce the experimentation samples such as signal to noise ratio 

and analysis of variance (ANOVA). The experimental results recorded by the optimal process 

parameters are validated by the theoretical method. It is believed that better accuracy is achieved with 

lesser layer thickness.  

Said et al. [12] have studied five different raster orientations and suggested that it causes alignment of 

polymer molecules along the direction of deposition during fabrication of the flexural, tensile and 

impact strength. Ahn et al. [13] have reported that parameters such as air gap and raster orientation 

significantly affect the tensile strength of FDM built part as compared to other three parameters such 

as raster width, model temperature, and colors. In addition, built parts showed anisotropic properties 

subjected to build orientation as far as tensile and flexural strength are concerned. Anitha et al. [14] 

have evaluated the three critical parameters (layer thickness, road width, and printing speed) affecting 

the quality of FDM prototype and concluded that the layer thickness is a predominant parameter, as it 

affects 51.57 % (of what?) at 99 % of significance. The other parameters like road width and speed 

have less influence parameter and contribute 15.57 % and 15.83 % at 99 % level of significant, 

respectively. It has been noticed that the material is extruded through the nozzle; it cools as it passes 

through the tip of the nozzle. During this stage, the material transforms to glass transition phase 

developing inner stresses causing irregular deposition. Crack formation occurs due to the irregular 

deposition the interlayer and the intralayer of the part, causing the part to fail or delaminate. Wang et 

al.[15] have also indicated that the glass transition phase is responsible for the reduction in part 

strength and part deformation.   

The above studies clearly suggest that critical factors (which ones? – they can be mentioned 

here)influencing the process parameters of PLA parts by 3D printing technique plays a vital role in 

improving the mechanical properties of the component/part. Though enough research has been done 

on orientation, nozzle temperature, air gap and other factors, but limited research is done on nozzle 

diameter, effect of lay-up thickness and lay-up speed. Therefore, it is essentially required to study 

optimization and enhancement of the mechanical properties of PLA materials prepared by a 3D 

printing process. 

2. Experimental methods and process 

In this work, three major factors were considered such as lay-up thickness, lay-up speed, and nozzle 

diameter. The lay-up thickness is the thickness of one layer deposited by the nozzle during one bead. It 

can be varied based on the nozzle diameter. Lay-up speed was the speed at which the printing is done 

and measured in mm/s. Nozzle diameter regulates the flow of material, varying the nozzle diameter, 

the thickness of the lay-up can be monitored. The levels of varying and fixed factors are presented in 

Table 1 and 2, respectively. 

Table: 1 Levels of factors 
Factor Symbol Unit Levels 

   
Low 

(-1) 

Centre 

(0) 
High (1) 
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Lay-up thickness (A) mm 0.2 0.25 0.3 

Lay-up Speed (B) mm/s 30 40 50 

Nozzle Diameter (C) mm 0.4 0.5 0.6 

 

Table: 2 Fixed Factors 

Factor Unit Values 

Part Fill style degree 45/-45 

Lay-up Temperature °C 180 

Bed temperature °C 40 

Infill % 70 

 

The heating coil around the nozzle heated the filament and start melting below its melting point. The 

thermoplastic material was extruded due to the pressure induced by the rotation of the rollers (feeders) 

of the nozzle. The nozzle moves in x and y direction according to the program and deposits the 

material on the table. The table moves in downward (z) direction when the layer is completed. The 

same procedure is repeated until the part is manufactured.  

The samples were prepared according to the ASTM D790 standards. The width of the sample was 

maintained at 12.5 – 12.8 mm, while the length was maintained at 126.9 – 127.1 mm. The thickness of 

the sample was in the range of 3.2 – 3.3 mm. The samples were modeled using Autodesk Inventor. 

The output of the sample from Autodesk Inventor was exported into .stl (Standard Triangulation 

Language) file format. The .stl file was imported to the Slice3r open source 3D printing software. 

There the sample was oriented and sliced into a number of layers. The sliced data was transferred to a 

3D printing machine. For the preparation of the samples, PLA filament was used. The temperature of 

the nozzle was kept at ~190 C and the bed was kept at room temperature ~ 27C. The printing set-

up is shown in figure 1.  

 

Figure: 1 Open source 3D printing machine 

For conducting three point bend test, a MECMESIN machine was used and shown in figure 2. The 

testing was carried with a load cell of 10kN. The test was conducted according to the ASTM standard 

D790 with a crosshead speed of 1 mm/min. Experiments were conducted during the single session. 

The flexural test was conducted at room temperature. The fixture of the 3 point was designed as per 

the ASTM standard. The samples were kept in two supports and the middle was loaded with a full 
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force (N) until the test sample fracture. The maximum stress acts at the center point where the full load 

is acting. The distance between the supports was 100 mm and 5 mm nose radius spherical tool was 

used for loading. The experiment was stopped when the sample broke.  

 

Figure: 2 MECMESIN 3 Point bending machine 

Response Surface Methodology (RSM) is a method of finding the possibility of an independent 

manufacturing parameter in the quantities form as indicated in equation 1.  

y=f(x_1,x_2,x_3,……x_n)±ε       (1) 

Where y is the response (yield of the process), f is the response function, x_1,x_2,x_3,……x_n were 

the different independent parameters and ε is error observed in the experimentation. By plotting the 

expected yield of the process of “y”, a surface was obtained is known as the response surface. The 

form of response function “f” and the independent manufacturing parameters is unknown. The relation 

between theses may be very complicated. The RSM plays a vital role to do a lower order polynomial 

equation in some region of the independent manufacturing parameters; the equation 1 for the function 

of the first order model can be rewritten as shown in equation 2. 

 y= A_0+A_1 x_1+A_2 x_2+⋯+A_n x_n±ε      (2) 
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However, there is a curvature appears in the system, then a higher order polynomial quadratic 

response surface model equation 3 may be used: 

        (3) 

The objective of the RSM is to predict a reasonable approximation of the response function and the 

independent manufacturing parameters, but to locate the region of the nearest optimal value. The 

response analysis surface model, the combination of variables (factors) that gives a better surface 

model is studied in detail. Figure 4 represents the summarized sequential procedure of response 

surface design. The F- value generated by the ANOVA table was used to predict the significance 

check. To predict the probability of the greater value of the F-value is calculated and indicated with 

noise by p-value. Analysis of variance (ANOVA) is also performed to predict the proposed model by 

using the second order regression analysis were calculated and tabulated in Table 4.  ANOVA gives an 

idea about the quadratic model for envisaging the flexural strength of samples with regression value p 

less than 0.05 were significant.  

To develop the empirical model on flexural strength, an extensive study on the effect of manufacturing 

parameters, experiments are conducted based on Face centered central composite design (FCCCD). 

The influencing manufacturing parameters such as Lay-up thickness (A), Lay-up speed (B) and 

Nozzle diameter (C) on the samples subjected to flexural strength is investigated. This design makes 

the axis points in the middle of the faces of cube and need of only three levels for each factor is 

considered. The design expert 9 software was used for regression and graphical analysis. The optimum 

values of the selected variables were obtained by eliminating insignificant factors. ANOVA is 

performed to test the adequacy of the model.  

The analysis was intended to enhance PLA parts with higher flexural strength. The significance of the 

regression model and the model coefficient was included data analysis. ANOVA was performed using 

21 runs to investigate the influencing factors affecting the flexural strength of the parts. To obtain 

more accurate results each combination of the factors are repeated 3 times. The quadratic model for 

analysis of flexural strength is developed and the quadratic model in the form of ANOVA is given in 

Table 3.  

 

Table: 3: Experimental data obtained from the FCCCD runs 

Run No. Factors 

Flexural Strength (MPa) 
  

Lay-up thickness 

(A) 

mm 

Lay-up speed (B) 

mm/s 

Nozzle diameter 

(C) 

mm 

1 0.2 40 0.4 102.88 

2 0.2 50 0.5 84.01 

3 0.2 50 0.6 75.44 

4 0.25 30 0.4 99.45 

5 0.25 30 0.5 84.01 

6 0.25 30 0.6 77.16 

7 0.25 40 0.4 97.73 

8 0.25 40 0.5 72.01 

9 0.25 40 0.6 75.44 

10 0.25 50 0.4 85.73 
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11 0.25 50 0.5 65.15 

12 0.25 50 0.6 72.01 

13 0.3 30 0.4 96.3 

14 0.3 30 0.5 66.87 

15 0.3 30 0.6 73.73 

16 0.3 40 0.4 87.45 

17 0.3 40 0.5 65.15 

18 0.3 40 0.6 70.3 

19 0.3 50 0.4 78.82 

20 0.3 50 0.5 63.44 

21 0.3 50 0.6 60.01 

 

3. Results and Discussion  

Subjecting the model to analysis, the factors affecting the flexural strength along with its interactions 

with others is also considered. The quadratic function of each variable is subjected to analysis. The 

degree of freedom is 13. From the quadratic model generated it is noted that a few factors are not 

influencing the flexural strength to a large extent. To improve the accuracy of the above model, factors 

which are insignificant need to be eliminated. The regression of the model indicates the relationship 

between the independent factors and the flexural strength to be 96.59%. It is observed from the Table 

4, factors; A, B, C, AC and C
2
 are significant while the other factors are insignificant. The insignificant 

factors are eliminated by backward elimination method to improve the model.  

  

Table : 4  ANOVA results of the quadratic model (before elimination) 

Source df Sum square Mean square F-value p-value Effect  

Model 13 2794.91 214.99 13.11 0.0024 Significant 

A-Lay-up Thickness 1 288.24 288.24 17.57 0.0057 Significant 

B-Lay-up Speed 1 177.85 177.85 10.84 0.0166 Significant 

C-Nozzle Dia 1 146.89 146.89 8.96 0.0242 Significant 

AB 1 2.000E-004 2.000E-004 1.219E-005 0.9973 Insignificant 

AC 1 119.51 119.51 7.29 0.0356 Significant 

BC 1 52.74 52.74 3.22 0.1231 Insignificant 

A^2 1 0.27 0.27 0.016 0.9029 Insignificant 

B^2 1 22.90 22.90 1.40 0.2820 Insignificant  

C^2 1 376.07 376.07 22.93 0.0030 Significant 

ABC 1 23.39 23.39 1.43 0.2775 Insignificant 

A^2B 1 75.13 75.13 4.58 0.0761 Insignificant 

A^2C 1 0.29 0.29 0.018 0.8981 Insignificant 

AB^2 1 7.33 7.33 0.45 0.5288 Insignificant 

AC^2 0 0.000    Insignificant 

B^2C 0 0.000    Insignificant 

BC^2 0 0.000    Insignificant 

A^3 0 0.000    Insignificant 

B^3 0 0.000    Insignificant 

C^3 0 0.000    Insignificant 

Residual 6 98.41 16.40    

Lack of Fit 1 98.41 98.41 2.812E+005 
< 

0.0001 
significant 

Pure Error 5 1.750E-003 3.500E-004    

Total 19 2893.33     
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R
2
 = 0.96598  

 

 

Flexural Strength = 74.19 – 12 x A – 9.43 x B – 8.57 x C -5e
-3

 x AB + 3.87 x AC + 2.57 x BC – 0.31 x 

A
2
 – 2.89 x B

2
 + 11.69 x C

2
 – 1.71 x ABC + 6.85 x A

2
B -0.43 x A

2
C + 2.14 x AB

2

      (4)  

 

The actual code factors A, B, C in the Eq. 4 is the actual factors of the transformed values, and hence 

the equation can be written as (5): 

 

Flexural strength = 74.19 – 12 x Lay-up thickness - 9.43 x Lay-up speed - 8.57 x Nozzle diameter - 5e
-

3
x (Lay-up thickness x Lay-up speed) +3.87 x(Lay-up thickness x Lay-up 

diameter ) + 2.57 x (Lay-up thickness x Lay-up speed ) - 0.31 x Lay-up 

thickness

2 - 2.89 x Lay-up speed


2 + 11.69 Nozzle diameter 


2- 1.71 x (  Lay-

up thickness x Lay-up speed  x Nozzle diameter) + 6.85 x (Lay-up thickness

2x 

Lay-up speed ) - 0.43 x (Lay-up thickness

2x Nozzle diameter ) + 2.14 x (Lay-

up thickness x Lay-up speed

2)

 

 

(All the equations would be more reader friendly if typed using Math Equation editor in MS 

Word. Especially multiplication sign would be more easy to distinguish) 

 

Table: 5  ANOVA results of the quadratic model (after elimination) 

Source df Sum square 
Mean 

square 
F-value p-value Effect 

Percentage 

contribution 

Model 5 2606.92 521.38 25.49 < 0.0001 significant 90.1 

A-Lay-up Thickness 1 1059.46 1059.46 51.79 < 0.0001 significant 36.61 

B-Lay-up Speed 1 155.87 155.87 7.62 0.0153 significant 5.39 

C-Nozzle Dia 1 794.24 794.24 38.82 < 0.0001 significant 27.45 

AC 1 119.51 119.51 5.84 0.0299 significant 4.13 

C^2 1 477.85 477.85 23.36 0.0003 significant 16.52 

Residual 14 286.41 20.46     

Lack of Fit 9 286.40 31.82 90922.20 < 0.0001 significant 9.9 

Pure Error 5 1.750E-003 
3.500E-

004 
    

Total 19 2893.33      

R
2
 = 0.9010 Adjusted R

2
 = 0.8657 

 

(the last sentence of the paragraph prior to this paragraph also states the same thing – about 

eliminating factors and improving model. Looks like a repetition. Please retain at one place only)To fit 

the quadratic model appropriately the non-signification terms are eliminated by a backward 

elimination process. The ANOVA table for reduced quadratic model is shown in Table 5. All the 

factors are found to be significant. The percentage contribution of the quadratic model was 90% as 

also seen in figure 3. The effect of lay-up thickness contributes to about 1/3 to the output. The second 

most influencing factor is the nozzle diameter. The variation in lay-up speed during fabrication has 

very little effect on the flexural strength. The nozzle diameter and the thickness increase the surface 

area to enhance bonding between each layer. The sample size prepared for tests is only 127 mm, hence 

the lay-up speed might not have influenced due to the smaller size of the specimen. 

 

The model is in full agreement with the data as all the value are significant, the model generated using 

the significant value is given in the below equation (6). 
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Flexural strength = 73.55 – 10.29 x Lay-up thickness – 9.95 x Lay up Speed – 8.91 x Nozzle Diameter 

+ 3.87 x Layup Thickness x Nozzle Diameter + 9.78 x Nozzle Diameter
2   

            

       (6) 

  

 
Figure: 3.Normal Probability plot of residuals at 90 % of confidence interval 

 

 
 

 

Figure: 4 Contour plot showing the effect of nozzle diameter and lay-up thickness on flexural strength 

 

The contour plot is the 2-dimensional representation of the 3-dimensional graph. It is a topographical 

graphical representation of longitude, latitude, and elevation in which x-, y-, and z-values are plotted.  

Figure 4 presents a surface of the contour plot generated by the prediction of the flexural strength of 

the 3D printed sample from the examination of the response surface of the flexural strength based on 

the variables lay-up thickness and nozzle diameter. A 3- Dimensional response surface shown in 
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Figure 5, gives the important information, and depicts about the flexural strength based on the other 

influencing factors like lay-up thickness and nozzle diameter.  

  

RSM is an experimental technique used to find the optimal response within specified ranges of the 

factors. For fitting a second-order equation for the response surface these designs are used. The 

quadratic equations of the model, the curvature in the true response surface function. RSM can 

estimate the maximum or minimum factor region exists inside it. For the industrial applications, RSM 

designs involve less number of factors, because the essential number of runs escalates rapidly with the 

number of influences.  

 

It has been observed that the decrease in lay-up thickness and nozzle diameter has prolonged the 

curing time of the PLA substrate with the adjacent layer exhibiting high flexural strength. From the 

graph, it is seen that lay-up thicknesses up to 0.225 mm with a nozzle diameter of 0.4 mm has a 

flexural strength of 100 MPa and higher. It is interesting to note that there is no influence of lay-up 

thickness (between 0.2 to 0.275 mm) for the nozzle diameter of 0.55 mm. The flexural strength 

remains constant. The flexural strength is decreased as the lay-up thickness is increased for the same 

nozzle diameter. Hence, the decrease in the nozzle diameter is responsible for increasing flexural 

strength. Whilst there is a slight decrease in the flexural strength as the lay-up thickness is increased. 

 
 

Figure 5 Response surface graph shows the effect of nozzle diameter and lay-up thickness on flexural 

strength 

 

4. Conclusions  

The investigation on the effect of PLA parts prepared by three different manufacturing parameters 

such as Lay-up thickness, Lay-up speed, and Nozzle diameter were studied in detail and its influence 

on the flexural strength has led to the following conclusions.   

 

 The flexural strength was completely dependent on the manufacturing process such us lay-up 

thickness, Lay-up speed and nozzle diameter 
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 The decrease in lay-up thickness and nozzle diameter during fabrication showed improvement in 

flexural strength.  

 The decrease in the nozzle diameter exhibited a steady increase in flexural strength. 

 There is a slight decrease in the flexural strength as the lay-up thickness was increased. 

 The quadratic equation has been developed to analyze the effect of the three process parameters 

statistically.   
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