
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

IConAMMA-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 310 (2018) 012095 doi:10.1088/1757-899X/310/1/012095

 

 

 

 

 

 

Numerical Investigation of Ice Slurry Flow in a Horizontal 

Pipe 

K S Rawat
1
, A K Pratihar

2
 

1,2
Department of Mechanical Engineering, G.B. Pant University of Ag. & Technology, 

Pantnagar-263145, Uttarakhand, India  

 

E-mail: kamalrawat273@gmail.com 

 
Abstract. In the last decade, phase changing material slurry (PCMS) gained much attention as 

a cooling medium due to its high energy storage capacity and transportability. However the 

flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid 

properties, velocity, particle size and concentration etc.. In the present work ice is used as a 

PCM and numerical investigation of heterogeneous slurry flow has been carried out using 

Eulerian KTGF model in a horizontal pipe.  Firstly the present model is validated with existing 

experiment results available in the literature, and then model is applied to the present problem. 

Results show that, flow is almost homogeneous for ethanol based ice slurry with particle 

diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is 

more uniform at higher velocity, concentration of ice and ethanol in slurry.  Results also show 

that ice concentration increases on the top of the pipe, and the effect of particle wall collision is 

more significant at higher particle diameter. 

1. Introduction 

The world energy consumption is increasing with the growth of the economy and population. 

Currently, 80% energy needs of the world are being fulfilled by the non-renewable energy resources 

(crude oil, coal and gas), which are depleting rapidly [1]. The electricity consumed by the HVAC&R 

systems accounts for a large portion of the total world electricity consumption [1-2]. Meanwhile, the 

world is also facing the environmental challenges due to the emission of the synthetic refrigerants like 

CFCs and HCFCs. Phase change material slurry (PCMS) as a secondary loop refrigerant can be used 

to reduce the energy consumption and the system charge. PCMS can store a greater amount of thermal 

energy per unit volume than single phase fluid. Thus, it reduces system charge and consumes less 

pumping power. PCMS can be produced during off-peak electricity load and supplied during peak 

load of electricity, which helps to balance the demand and supply of electricity [3]. 

PCMS is a multiphase fluid or mixture of liquid and solid particles of a PCM. PCMS may comprise of 

ice, clathrate hydrate, paraffin wax or carbon dioxide as dispersed solid particles in a carrier liquid as a 

secondary loop refrigerant. Selection of PCMS depends on the desired operating temperature range 

and its chemical (level of flammability, toxicity and corrosiveness) and physical (vapour pressure and 

phase segregation) properties for particular applications [4]. Among the different PCMS, ice slurry is 

an appropriate choice for food and air-conditioning application. Ice slurry has a high energy storage 

density, high heat transfer coefficient and it also reduces the system size (storage tank and pipelines) 
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[5]. Due to these attractive features, the ice slurry gains much attention as a secondary loop refrigerant 

over other alternatives. Ice slurry can be defined as a dispersed ice particles in a carrier liquid (either 

water or a binary solution of water and freezing point depressant). Based on the application, the initial 

size of the particle (0.1-1.0 mm), their concentration (10-30 % volume fraction) and the configuration 

of carrier liquid may vary in the ice slurry [6]. 

As the flow of ice slurry through a pipe is a complex S-L flow, it is a formidable task to analyse this 

type of flow by experiments due to complexities in measurements and visualization caused by 

dispersed solid particles. In such cases, Computational fluid dynamics (CFD) is a practical and cost-

worthy approach which provides ample information about the flow, especially pressure drop, velocity 

and particle concentration profile [7]. The pressure drop and particle concentration profile are 

important factors in the solid-liquid flow, to determine the pump capacity and the effect of other 

parameters (particle diameter, initial solid volume fraction, concentration of FPD) which affect the 

mixture and solid flow rates, as well as subservient effects like particle deterioration and wall abrasion 

[8]. Some attempts have been already made to solve such type of problems through CFD [9-15], 

however, still quantitative literature is not available for modelling on ice slurry.  

Modeling of dense solid-liquid (S-L) flow requires knowledge of the flow field around each particle, 

interaction between particles, particles and the wall, along with their effect on the liquid. To 

computational solution for such problem, we have two approaches: Euler-Lagrange (E-L) and Euler-

Euler (E-E). In E-L approach, liquid phase is treated as continuum to solve and solid phase is solved 

by tracking a large number of solid particles in the flow field. The principle drawback of the E-L 

approach is that it ignores the collision interaction between solid particles, furthermore in dense flow 

too many particles have to be tracked and computational time increases with the number of particles. 

The Euler-Euler approach considers both solid and liquid phases in a continuum that interpenetrates 

each other and exchange momentum, hence this technique also known as the interpenetrating continua 

model. In E-E approach, computational time doesn't increase with particle concentration. In this 

approach, each conservation equation is solved for both phases separately [16].  

In E-E approach three different models: VOF, mixture and Eulerian model are available. However 

Eulerian model with Kinetic theory of granular flow (KTGF) is the most appropriate model to solve 

such solid-liquid flow. In the present work, numerical investigation of the PCM slurry flow has been 

carried out using Eulerian KTGF model in a horizontal pipe of 23 mm diameter and 2 m length. Ice is 

used as a PCM and mixture of ethanol & water as a carrier liquid. From the simulation effect of 

velocity, initial ice volume fraction, particle diameter and concentration of FPD has been predicted.  

2. Mathematical Modeling 

To modeling of isothermal ice slurry flow, Eulerian KTGF model is considered in which, domain 

divided into sufficiently small volumes, but still large enough relative to the individual particle 

diameter and the equations of motion are averaged over these volumes [16]. In this approach, 

conservation equations are solved for each phase. In the present work, ice slurry flows are considered 

to be incompressible and ice particles are assumed to be smooth and spherical. 

The continuity equations for both the phases are given as: 

    0l l l l lv
t
   


 


 (1) 

    0s s s s sv
t
   


 


 (2) 

1l s  
 

(3) 

where α, ρ, v are volume fraction, density and velocity respectively. The subscripts l denotes the liquid 

and s solid phase.  

The momentum balance equations for both the phases are given as: 

For liquid: 
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
      
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  (4) 

   
2

3

T

l l l l l l l l lv v v I     
 

      
 

  (5) 

For Solid: 

   s s s s s s s s s s s s lsv v v P g P R
t
       


       


 (6) 

   
2

3

T

s s s s s s s s sv v v I     
 

      
 

 (7) 

where R,  , I   are interfacial forces, viscosity, and unit tensor respectively. s  defined as bulk 

viscosity which is the measure of solid particles resistance to compression and expansion (adopted 

from Lun et al., 1984 [17]). 

 
0.5

,

4
1

3
s s s s o ss ssd g e  



 
   

 
  (8) 

The solid shear viscosity is calculated as Gidaspow et al. 1992 [18]. 

, ,s s kin s col      (9) 

where ,s kin , ,s col are the kinetic and collisional viscosities given by following equations. 
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,
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 
0.5

, ,

4
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5
s col s s s o ss ssd g e  



 
   

 
 (11) 

where sd , sse ,   denotes the solid particle diameter, coefficient of restitution between particles and 

the granular temperature. 0,ssg  is the radial distribution function that can also be seen as a probability 

for interaction between particles and defined by the following equation given by Lun et al., 1984. 
1

1
3

,

,max

1 s
o ss

s

g






  
       

 (12) 

The interfacial forces in the present work include drag, lift and turbulent dispersion force. Drag force 

has most important role in S-L slurry flow is described by Gidaspow, 1994 [19] in the present work 

 ,D sl sl s lF K v v   (13) 

where  ls slK K  are the interphase momentum exchange coefficients.  

When, 0.8l   

2.653

4

s l l s l

sl D l

s

v v
K C

d

  
 


  (14) 

where DC is the drag force coefficient that is expressed as 

 
0.68724

1 0.15 Re
Re

D l s

l s

C 


  
 

  (15) 



4

1234567890‘’“”

IConAMMA-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 310 (2018) 012095 doi:10.1088/1757-899X/310/1/012095

 

 

 

 

 

 

When, 0.8l   
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sl l
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d d
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





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The lift force on the solid phase is calculate in the present work as 

 ,lift sl L l s l s lF C v v v    (17) 

, ,lift sl lift lsF F   (18) 

where, CL is the lift force coefficient which is assigned to be 0.2. The effects of turbulent dispersion 

forces which avail the interface turbulent momentum transfer is defined using Burns et al. 2004 [20]. 

For the modelling of S-L flow, KTGF is adopted in which solid particles are treated as molecular of 

dense gases. During the random motion, the fluctuating energy of solid particles is described by 

granular temperature   . The granular temperature is estimated by the following equation of 

fluctuating energy balance.  

     
3

. ( ) : . 3
2 ss s s s s s s s s s s m ls sV p I V K K

t
      

 
             

 (19) 
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 (20) 
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s

e g

d
  





   (21) 

  2

0,2 1s s s s s ss s ss sP e g         (22) 

where  ,sP ,
s

K m denotes the solid pressure, energy diffusion coefficient and collisional dissipation 

energy respectively.  

The per phase k turbulence model is adopted to capture the turbulent in the flow [21]. 

  

Figure 1 (a). Sketch of meshed pipe cross-

section 

Figure 1 (b). Sketch of meshed pipe 

2.1. Boundary Condition & Numerical Procedure 

The flow domain is divided into 377000 hexahedron elements by discretising the cross-section into 

377 parts (shown in the figure 1.a) and pipe length into 1000 sections (which is shown in the figure 
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1.b). The grid independence test was also performed, however, further refinement does not influence 

the results significantly. 

The boundary conditions for both the phases are given at inlet, outlet and wall of the pipe. For the 

inlet, velocity-inlet condition with the velocity perpendicular to the cross-section of the pipe for both 

the phases and the uniform ice particle volume fraction for solid phase is specified. For the outlet, 

pressure-outlet condition with zero gauge pressure is specified for both the phases. At the pipe wall, 

no-slip condition is specified for liquid phase and for the solid phase Johnson-Jackson’s condition 

specified with specularity coefficient of 0.02 and coefficient of restitution 0.9 for particle-wall 

collision. Finite volume method with SIMPLE algorithm, for coupling pressure and velocity, is 

applied to solve continuity, momentum and other supporting equations discussed above. All the 

solutions presented here are calculated for transient condition with time step 0.001 s and converged to 

residuals of 10
-4

.  

3. Model Validation 

Firstly the present model is validated with existing experiment results in literature to ensure that the 

present model is correct. Figure 1 compares the velocity profiles of slurry flow obtain by the present 

CFD model and the experimental result of Vuarnoz et al., 2002 in the horizontal pipe of 23 mm 

diameter, [22]. The results are compared for the ice slurry as a mixture of 10.3 % ethanol in water with 

particle diameter of 0.1 mm at a velocity of 1.25 m/s.  Due to unavailability of experimental data of 

the ice particle concentration profile, validation is done with the sand-water slurry flow in a horizontal 

pipe presented by Gillies et al., 2004 [23]. Figure 2 shows the comparison of CFD and experimental 

results at the mean velocity of 3 m/s, initial sand particle concentration of 19 % and particle diameter 

of 0.09 mm.  

  

Figure 2. Velocity profile of ice slurry in 

horizontal pipe  

Figure 3. Concentration profile of sand slurry 

in horizontal pipe 

4. Result & Discussion 
In ice slurry, ice has a lower density than water and during the flow ice particles try to settle on the top 

of the pipe due to buoyant force. In ice slurry flow in horizontal pipes, four flows are observed, which 

classified as: homogeneous, heterogeneous, moving bed and stationary bed flows. Homogeneous flow 

appears at high velocity and ice particles distribution is uniform. With the decrease in velocity 

concentration of ice increases towards the top of the pipe and flow is identified as heterogeneous. With 

the further reduction in velocity the ice concentration at the top reaches to maximum volume fraction 

and flow regime converts into moving bed. At very low velocity, stationary bed flow occurs in which 

only liquid flow at the bottom of the pipe and ice particles rest at the top. For the transportation of 

slurry only homogeneous and heterogeneous conditions are recommended. Therefore, in slurry flow 

analysis, solid particle distribution is an important parameter which is difficult to measure 

experimentally.  
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Figure 4 shows the contours of solid particles distribution at the perpendicular cross section on the 

outlet of the pipe. The contours of solid particles distribution are shown for the different inlet 

velocities of 1, 2 and 3 m/s at different initial solid volume fractions of 10, 20 and 30 %.  It can be 

observed from the figure that the distribution of the ice particles is almost homogeneous. The contours 

are showing that, with the increases in initial volume fractions and inlet velocities the distribution of 

particle is more uniform due to more frequent particle-particle collisions.  

Figure shows that for all initial volume fractions, the maximum value of the local ice volume fraction 

occurs at the top of the pipe and with the increases of inlet velocity the value of maximum value of the 

local ice volume fraction lies away from the top pipe due to the repulsive forces from the wall due to 

particles wall collision. The repulsive force becomes more significant at higher velocity and higher 

initial volume fraction.  

 

Figure 4. Contours of ice volume fraction at different inlet velocities and initial volume fraction 

 

   

V = 1 m/s & IVF = 10 % V = 2 m/s & IVF = 10 % V = 3 m/s & IVF = 10 % 

   

V = 1 m/s & IVF = 20 % V = 2 m/s & IVF = 20 % V = 3 m/s & IVF = 20 % 

   

V = 1 m/s & IVF = 30 % V = 2 m/s & IVF = 30 % V = 3 m/s & IVF = 30 % 
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Effect of particle diameter on concentration profile has been shown in the figure 5. The results are 

shown for the different particle diameters of 0.1, 0.25 and 0.4 mm at constant inlet velocity of 1 m/s & 

IVF of 10 %. It can be seen in the figure that as the particle diameter increases the solid concentration 

increase in the upper half and decrease in the lower half of the pipe; hence flow is more heterogeneous 

with higher particle diameter. The bigger diameter particles have more inertia to move upward in 

comparison to small particles, therefore the concentration of ice particles is more at the top with a 

bigger particles diameter. It can also be observed from the figure that the effect of particle wall 

collision is more significant with the higher particle diameter due to greater repulsive forces from the 

wall.  

Figure 6 shows the effect of different concentration of FPD in ice slurry on concentration profile. The 

results are shown for 0, 5 and 10 % of ethanol based ice slurry at constant inlet velocity of 1 m/s & 

IVF of 10 %. Figure shows that flow became more homogeneous as the concentration of ethanol 

increases in the solution due to decrease in density difference between solid and liquid phases. 

However, with the increase of ethanol concentration in the water also reduced the freezing point 

temperature of the liquid phase. The performance of the ice making unit decreases with lower freezing 

point liquid, as the evaporator temperature must be lower than freezing point of the liquid to produce 

ice [24]. 

 

Figure 7 shows the contours of the velocity distribution of the solid phase at the perpendicular cross 

section on the outlet of the pipe. The contours of velocity distribution are shown for the different inlet 

velocities of 1, 2 and 3 m/s at different initial solid volume fractions of 10, 20 and 30 %.  The velocity 

contours shows that the local velocity near the pipe wall is almost stagnant and has very low value due 

to viscous forces are dominating near the wall region.  

The value of the velocity increases as we move radially toward center. Figure shows that for the 

constant inlet velocity, the value of local velocity increases with initial volume fraction of ice at the 

center of the pipe. It is also observed that at constant volume fraction of ice, velocity profile is more 

   

Dp = 0.10 mm Dp = 0.25 mm Dp = 0.40 mm 

Figure 5. Contours of ice volume fraction at different particle diameters 

   

Figure 6. Contours of ice volume fraction at different concentration of ethanol in slurry 
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homogeneous with increase in inlet velocity. The distribution of the velocity is symmetric for all the 

cases and it is also observed that there is no difference in the velocity distribution between the solid 

and liquid phase for all the cases.  

 

Figure 7. Contours of solid phase velocity at different inlet velocities and initial volume fraction 

Figure 8 shows the variation of pressure drop per unit length with the inlet velocity and initial volume 

fraction. Pressure drop is an important parameter since it is used to determine the pump capacity. The 

pressure losses in the slurry flow are due to the S-L interaction and the collisions between solid 

particles & with the wall.  Due to increase in velocity and ice concentration, the rate of interaction 

between S-L, and number of collision particles & wall increases which causes more frictional losses. 

However the percentage change in the pressure drop with ice fraction is small in comparison to the 

velocity. 

 

   

V = 1 m/s & IVF = 10 % V = 2 m/s & IVF = 10 % V = 3 m/s & IVF = 10 % 

   

V = 1 m/s & IVF = 20 % V = 2 m/s & IVF = 20 % V = 3 m/s & IVF = 20 % 

   

V = 1 m/s & IVF = 30 % V = 2 m/s & IVF = 30 % V = 3 m/s & IVF = 30 % 
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Figure 8. Variation of pressure drop per unit length with velocity and ice volume fraction 

5. Conclusions 

In the present work, numerical investigation of ice slurry flow has been carried out using Eulerian 

KTGF model and following conclusions can be inferred from results: 

 The distribution of ice particles is uniform for 10 % ethanol based ice slurry with particle 

diameter of 0.1 mm at the inlet velocity of 1 m/s and 10 % IVF and flow become more 

homogeneous with increase in inlet velocity and IVF.  

 The chance of ice slurry flow to become heterogeneous increases with increase in particles 

diameter. The repletion forces from the wall is also significant with higher particle diameter 

and higher inlet velocity and IVF   

 Velocity profile for both solid and liquid are same for heterogeneous flow. Velocity profile is 

symmetric for all the cases due to high velocity and small particle size.  

 The variation of pressure drop also investigated in the simulations. Pressure drop increases 

with increase in velocity and ice concentration due to more interaction between the phases and 

frequent collision between particles & wall. 
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