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Abstract. Vibration response analysis of a hybrid beam with surface mounted patch 

piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model 

based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has 

eight mechanical and a variable number of electrical degrees of freedom. The beams are also 

modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for 

piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. 

Results are presented to assess the effect of size of piezoelectric patch layer on the free and 

forced vibration responses of thin and moderately thick beams under clamped-free and 

clamped-clamped configurations. The beams are subjected to unit step loading and harmonic 

loading to obtain the forced vibration responses. The vibration control using in phase actuation 

potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-

FE results. 

1. Introduction 

Many light weight structural components are made of composite and sandwich laminates because of 

their high stiffness to weight ratio and similar other properties. Most of these components are 

generally modelled as smart multi-layered beams.  These have found varied applications in the 

aerospace, robotics, defense equipments, measurement devices, satellites, automobile and ship 

building industries.  Precise analysis of hybrid laminates require systematic and precise approximation 

of the displacement and the potential field across the thickness. Hodges et al. [1] presented methods 

for predicting the vibration frequencies of composite beams and their mode shapes. They proposed 

different methods to determine the sectional elastic constants and ways to solve the equations of 

motion. Banergee [2] used dynamic stiffness matrix method to carry out the free vibration analysis of 

composite Timoshenko beams loaded in axial direction. The theory includes the coupling between the 

bending and torsional modes of deformations. Lee et al. [3] used ESL theories for transient analysis of 

laminated structures. Kapuria et al. [4] developed an efficient coupled one-dimensional model for the 

dynamics of piezoelectric composite beams and presented a one-dimensional beam finite element with 

electric degrees of freedom [5]. A unified theory for smart beam with piezoelectric sensors and 

actuators is presented by Kapuria and Hagedorn [6]. Della and Shu [7] studied vibration of smart 
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beams using micromechanics approach. Chevallier et al. [8] presented a 3D FE simulation for free 

vibration of thick beams and plates with a symmetric pair of surface mounted piezoceramic patches. 

Rahman and Alam [9-11] presented 1D-FE modelling using layerwise (zigzag) theory for dynamic 

analysis of smart laminated beam. Giunta et al. [12] studied free-vibration analysis of cross-ply beams 

under simply supported configuration. They used various higher-order and classical theories for the 

analysis and approximated the through the thickness displacement field in the form of a polynomial 

expansion. Koutsawa et al. [13] presented 1D finite elements to attain the free vibration response of 

composite smart beams. They approximated displacements and electric potential using Lagrange’s 

polynomials. Shang et al. [14] used Generalized FE Method to carry out the dynamic analyses of 1D 

bar and beam problems. They compared their results with conventional FE formulation to prove 

efficiency of the method. Sayyad A S and Ghugal [15] presented a critical review of literature on 

bending, buckling and vibration analysis of laminated beams based on various theories. He et al. [16] 
proposed a new model for the two-layer composite beam with partial interaction by modifying Reddy's 

higher order beam theory. They used Hamilton’s principle for formulation of governing equations for 

free vibration and buckling. 

A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is 

presented for the vibration response analysis of a hybrid beam with surface mounted patch 

piezoelectric layers. The size of the piezoelectric patches are varied and its effects on free and forced 

vibration responses are studied. Results are presented for thin and moderately thick beams under 

clamped-free and clamped-clamped configurations. Unit step pressure loading and harmonic pressure 

loading are applied to set forced vibration in beam. The vibration control using in phase actuation 

potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE 

results. 

2. Finite element model of hybrid beam with patch piezoelectric layers 

Consider a hybrid beam with surface mounted piezoelectric patches. The beam is divided into elastic 

and hybrid segments due to the existence of these patches. Using coupled zigzag theory 

approximations [5], the potential and displacement field variables   ,   xu  and  zu are assumed as 

     , , ,l lx z t z x t    (1) 
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where 1 2O  and 1 4O  are null matrices of order 1x2 and 1x4 respectively; 

     , , ,l lx t x z t  ;     l z are linear interpolation functions for   ; 1u  and 2u  are the generalised 

displacements;   l z


is a piecewise linear function;      , k klS z S z


  are the cubic functions of z. The 

indices   ,  l l  take values 1  ,2, , n  . 

The assumed displacement field satisfies the continuity of xu and zx at the interfaces of layers and 

the shear traction-free state at the bottom surface and top surface of the beam. Using partially 

nonlinear strain-displacement relations and electric field-potential relations, the strains and electric 

fields are obtained as: 
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where 1  and 5  are the generalised beam mechanical strains; 
   1 1

,x zE E  ,
 2

  xE   and 
 2

zE  are the 

electric field components. 

Let  bq  be the pressure on the bottom surface and  tq  on the top surface of the beam. The 

variational equation, using the extended Hamilton’s principle [17] for the beam, is obtained as: 
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(7) 

where ,I I  are inertia matrices;    1 5  ,
T T

l l
x x x x x xF N M P R F Q Q   and ,  l

xV V are the beam 

stress resultants; lH  and lG are the beam electric displacement resultants; 2  q is the mechanical 

load, 4  lq  is the electrical load, 2 q̂  and 4
ˆ lq  are the damping loads. The superscript * means values at the 

ends. 

A two noded beam element is considered for making the finite element model. Each element has 

eight mechanical degrees of freedom and fluctuating number of electric degrees of freedom. The 

transverse deflection and electric potential are expanded using cubic Hermite interpolation functions. 

Axial displacement and shear rotation are expanded using linear Lagrange interpolation functions. 

The element generalized displacement vector, ed  is defined as 

 0 0 0

TT T T T ee e e e l
x zd u u    (8) 

where 
0 0 0  , , ,

ee e e l
x zu u   are the nodal value vectors.  

Considering terms for linear analysis only, the participation eT  of one element to the integral in 

equation (7) is attained as 
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where,  

 I is beam inertia matrix;    D  is the generalized stiffness matrix of the beam; 
2 2,  ,   m mB B B are 

displacement interpolation matrices and  B is strain displacement interpolation matrix. 
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The contributions from all the elements are summed up to obtain the system equation as 

Md Cd Kd P    (10) 

where M ,  C  and  K are assembled from element inertia, damping and stiffness matrices ,e eM C  and 
eK  respectively. d, P are the assembled displacement and load vectors  respectively. 

Equation (10) can be partitioned and the damping matrix and load terms are set as zero to obtain 

the undamped free vibration response.The emanating eigenvalue problem is solved using subspace 

iteration method to acquire first n undamped natural frequencies   n . 

3. Results and discussion 

A composite substrate (b) and a sandwich substrate (c) are considered for the analysis. The substrate 

(b) is a symmetric graphite epoxy composite laminate of four layers with layup (0ᴼ/ 90ᴼ/90ᴼ/0ᴼ) and 

thicknesses (0.25h/0.25h/0.25h/0.25h). The substrate (c) is a symmetric sandwich laminate of three 

layers. The thickness of top and bottom face sheets is taken as 0.08h and the thickness of soft core is 

taken as 0.84h. Here h is the total thickness of the elastic substrate for both the beams. Piezoelectric 

patch (PZT-5A) is bonded on top surface of the elastic substrate at fixed end for cantilever 

configuration and at one of the clamped ends for clamped-clamped configuration. The width of the 

beam and piezo patch are modelled as unity and the thickness of piezo-patches is taken as 0.1h. The 

length of PZT-5A patch,   pl , is varied to assess the effect of variation in size of piezoelectric patch on 

the dynamic response of hybrid beam. The bottom and top surfaces of the elastic substrate are 

grounded. The results are obtained for span to thickness ratio, / 10,20S l h  .Here l  is the length of 

beam. The properties of graphite epoxy composite lamina, the face, the core and the PZT-5A are taken 

from Ref. [10]. 

3.1. Free vibration response 

The beams are modelled with 0.2 ,0  .4 ,0.6 ,0.8 ,p l l l l ll  and analysed for free vibration response for 

graphite epoxy composite substrate (b) and sandwich substrate (c). 

Figure 1 shows the variation of normalised natural frequencies with mode of vibrations for beam b 

with varied piezo patch sizes. Results are plotted for first five vibration modes.The frequencies are 

non-dimensionalised as: 1/2 1/2
0 0  /n n S Yl   . 

  

Figure 1. Variation of natural frequency with mode of vibrations for beam b with varied piezo-

patch sizes. 

 

For a given patch size the frequency increases with mode of vibration, n . With increase in size of 

piezo patch layer, the normalised natural frequencies decrease for all the vibration modes. Similar 

observations are obtained for beam c (figure 2). This decrease is less significant for lower modes 

( 1, 2, 3) n  but more significant for higher modes ( 4, 5)n  . The amount of decrease is more in 
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sandwich beam c in comparison to the composite beam b. For a given beam configuration the 

frequencies corresponding to clamped-clamped beam are higher in comparison to clamped-free beam.  

 

  

Figure 2. Variation of natural frequencies with size of piezo-patch layer for beam c. 

 

Table 1. Comparison of natural frequencies for beam b. 

S 
p ll  Natural 

Frequency 

Clamped-Free Clamped-Clamped 

1D-FE 2D-FE 1D-FE 2D-FE 

10 

0.4 

 1  3.81 3.81 14.14 13.83 

 2  15.75 15.43 29.22 28.40 

 3  33.36 32.75 48.48 46.42 

0.8 

 1  3.52 3.51 12.66 12.40 

 2  15.03 14.80 27.35 26.52 

 3  31.96 31.34 45.23 43.23 

20 

0.4 

 1  4.10 4.10 19.82 19.67 

 2  20.76 20.61 44.92 44.46 

 3  48.48 48.21 77.28 75.75 

0.8 

 1  3.79 3.79 17.75 17.59 

 2  19.84 19.72 42.15 41.51 

 3  46.82 46.40 72.62 70.91 

 

Table 1 and table 2 show comparison of first three normalised natural frequencies for beam b and 

beam c respectively with different piezo patch sizes for span to thickness ratios, 10, 20S  . The values 

of frequencies increase as the beam becomes thinner for both the end conditions. The results are in 

compliance with the 2D-FE results obtained using ABAQUS for both the hybrid beams. 

3.2. Forced vibration response 

A uniform upward pressure load,  0   tq q F t , over entire beam length on the top surface of beam and 

in phase uniform potential,  0  n F t   on top surface of piezo patch is applied to obtain the forced 

vibration response. The axial and transverse displacements ( ,  )x zu u , the normal stress ( ) x , the 

potential ( ) and time  t are nondimensionalised as 

3 4 2 2 1/2 1/2
0 0 0 0 0 0 0 0 0 0100 / , 100 / , / 100 /, ,  /x x z z x xu u Y hS q u u Y hS q S q Y d hS q t tY l           
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For unit step loading,   1 F t   and for harmonic loading,      20  F t cos t . The time history 

response of the tip displacement for undamped vibrating cantilever (clamped-free) beam are obtained 

for beam configurations b and c with varied piezo patch sizes.  The results obtained using 1D-FE 

model are compared with the corresponding results obtained using 2D-FE model in figures 3 and 4. 

The applied actuation potential 0   is taken as 0, 20  for harmonic loading and  0, 10  for unit step 

loading. The time step is taken as 0.0006 sec. and time history is plotted for 1.2 sec. 

Table 2. Comparison of natural frequencies for beam c. 

S 
p ll  Natural 

Frequency 

Clamped-Free Clamped-Clamped 

1D-FE 2D-FE 1D-FE 2D-FE 

10 0.4  1  5.37 5.37 12.35 12.12 

 2  14.17 13.91 27.21 26.62 

 3  31.89 30.92 40.55 38.93 

0.8  1  3.57 3.55 8.94 8.74 

 2  12.80 12.56 19.04 18.52 

 3  25.27 24.71 31.30 30.12 

20 0.4  1  6.26 6.26 19.66 19.44 

 2  21.23 20.98 45.24 44.63 

 3  49.74 49.10 70.22 68.77 

0.8  1  4.21 4.20 14.12 13.93 

 2  19.02 18.79 32.18 31.56 

 3  40.74 40.13 54.57 53.19 

 

 

  

  

Figure 3. Time history of tip displacement for beam b. 
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The beams vibrate at the first natural frequency in case of unit step loading and at the forcing 

frequency in case of harmonic loading. It is observed that the size of piezo-patch layer has no 

significant effect on amplitude of vibration for closed circuit condition i.e. for 0 0  . The controlled 

tip deflection is obtained with applied in phase actuation potential on top surface of piezo-patch layer 

and the amplitude of deflection can be minimised by using suitable value of the actuation potential. 

Further for the same actuation potential, the deflection amplitude can be restricted to a lower value 

with a larger size of piezo patch layer. 

 

  

  

Figure 4. Time history of tip displacement for beam c. 

 

 

  
Figure 5. Comparison of through the thickness distribution of xu  and xx for beam b. 
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Figure 6. Comparison of through the thickness distribution of xu  and xx for beam c. 

Figures 5 and 6 show the comparison of distribution of axial displacement xu  and stress xx across 

the beam thickness at 0.2  x l . The distribution is plotted at time, 0.054t   for beam b and 

0.174t   for beam c with different sizes of piezoelectric patch layer. The 1D-FE distribution 

matches well with the 2D-FE distribution. 

4. Conclusions 

The size of piezoelectric patch layers in smart beams is significant as it results in different structural 

response. A 1D-FE model to assess the effect of size of piezoelectric patch layer on vibration response 

of a hybrid beam is presented. The results are obtained for clamped-free and clamped-clamped end 

conditions. With increase in size of piezo patch layer, the free vibration frequencies decrease for all 

the vibration modes. This decrease is less significant for lower modes but more significant for higher 

modes. In case of forced vibrations, the size of piezo-patch layer has no significant effect on amplitude 

of vibration for closed circuit condition i.e. for 0 0  . The controlled tip deflection is obtained with 

applied in phase actuation potential on top surface of piezo-patch layer. The piezoelectric patch 

actuators of large size placed nearer to the fixed end with the application of appropriate actuation 

potential results in better control of tip deflection in cantilever beams. These observations may be used 

as a basis for experimental investigation and design for vibration control system for composite and 

sandwich hybrid structures. 
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