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Abstract. Linear spring mass framework controlled by moving belt friction have been
subjected to various examinations. Dynamical attributes like amplitude and frequency of
oscillations have been in a big way studied along by the whole of the different approach
mechanisms for this model. Along by all of the dynamical characteristics, bifurcation structures
also have been investigated. On the other hand, the corresponding self-excited SD oscillator has
not instructed comparable attention. This complimentary presents the numerical investigation
of the character of a self-excited SD oscillator resting on a belt moving with consistent speed
and excited by dry friction. The moving belt friction is displayed as the Stirbeck friction
(friction first decreases and then increase smoothly with interface speed) to figure the scientific
model. It is demonstrated that the pure-slip oscillation phase influenced by system parameter
α. The influence of different system parameters on the dynamical characteristics was alongside
considered.
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1. Introduction
A lot of consideration has been paid to the self-excited vibration on account of friction in
functional mechanical designing frameworks, i.e., brake, equipment tools, and others. The
majority of the action of analysis in the literature are based on moving-belt in which mass is
resting on the belt and supported by spring-damper to describe the friction-generated vibration
in mechanical systems. The most of the study is done on the model which is described by
a spring-mass-damper linear oscillator framework on the moving belt to move the dynamics
which is directed by friction, such as periodic motion, chaotic behavior, and stick-slip. Thomsen
and Fidlin [1] acquired analytical expression for stick-slip and pure-slip vibration amplitudes
for the single degree of freedom linear system spring-mass on moving belt arrangement. Abdo
and Abouelsoud [2] employed Liapunov second technique to approximate the amplitude of the
velocity and displacement of the stick-slip movement of a single degree spring-mass-damper
linear system on a driven belt. Thomsen [3] has furthermore demonstrated how friction-induced
stick-slip motion are influenced by harmonic excitation and how high-frequency excitation can
successfully expel the negative gradient effectively in the friction-velocity relationship, so it is
vital to preventing self-excited oscillations. Further, Andreaus and Casini [4] have investigated
the effect of belt velocity and friction modeling on the response of stick-slip oscillations in the
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same model. Popp, Hinrichs and Oestreich [5] studied the bifurcations and chaotic behavior of a
friction oscillator with simultaneous self and external excitation. They also studied the influence
of different friction characteristics on the dynamic response of a friction oscillator. Hinrichs and
Oestreich [6] have presented the dynamics of a non-smooth friction oscillator under self and
external excitation and also the bifurcational behavior anticipated by numerical simulations and
results compared with practical outcomes. Cheng et al. [7] have been concentrated the dynamic
attributes of a mass on moving belt show, offered by external excitations. Furthermore, the
parametric review was displayed in which the excitation emerges from the variable stiffness
of a linear spring in the framework while the external excitation comprises of a harmonic
force. Devarajan and Bipin [8] obtained analytical expression for stick-slip and pure slip
vibration amplitudes for the classical duffing oscillator on-moving belt system. At present,
there are numerous nonlinear friction models portrayed by geometric nonlinearities of versatile
extensive distortion in designing, for example, the geometric nonlinear vibration instigates by
contact between the brake plate and pad. Santhosh et al. [9] examined discontinuity initiated
bifurcations seen in the geometric nonlinear smooth and discontinuous (SD) oscillator and in
systems with friction are explored utilizing Filipov strategies. Li et al [10] proposed a modified
archetypal self-excited SD oscillator with geometrical nonlinear friction oscillator moving on
belt and demonstrated that the system characteristics of multiple stick regions, parabolic shape
transition and friction give rise to asymmetry. Under perturbation, the framework initiated
vibration of numerous stick-slip phenomena. Li and Cao [11] studied the multiple stick-slips
chaotic motions of a self-excited SD oscillator which is driven by moving belt friction based
upon the SD oscillator and classical moving belt. Li et al [12] investigated the local as well as
global bifurcations on the basis of Stribeck friction function model of an geometrical nonlinear
self-excited smooth and discontinuous (SD) oscillator. From the preceding cases, it is clear that
extensive studies have been carried out on stick-slip and pure-slip oscillations of self-excited SD
oscillator which is excited due to dry friction with several friction models and with or without
harmonic excitation analytically as well as numerically. However, the amplitude response of
stick-slip and pure-slip oscillation of self-excited SD oscillator moving on a belt excited by dry
friction with constant velocity has not been studied. The main purpose of this paper is to study
the influence of system parameter α on the system vibration amplitude in stick-slip and pure-slip
phases and the change in the frequency of the system and also studied the influence of friction
difference on the stick-slip vibration amplitude of the system. This paper is arranged as follows.
All the numerical models of related with this review are presented in segment 2. Section 3
provides numerical solution and discussion of the results. At long last, a few comments on this
paper are closed in segment 4.

2. Problem Explanation and Equations of Motion
The mathematical model consists of differential equations with discontinuous right hand side.

Assuming a small but finite difference in static and kinematic friction. This system comprises
with a mass M, which is supported by a moving belt and associated with a settled support
through an inclined linear spring of stiffness coefficient K, and a viscous damping coefficient C,
as shown in Figure 1. The mass vibrates due to dry friction Ff , which is modeled as Stribeck
friction on the contacting surface. The belt moves with a steady speed Vb and is supposed to be
non-deformable. Here, the mass ought to move with the driven belt in the horizontal direction
without loosing the contact. The state of the mass on the moving belt at some specific time t
is taken as X.

From the figure 1 we can write:

sin γ = X√
X2+H2

cos γ = H√
X2+H2

Spring force = Kδ0 +K
(√

X2 +H2 − L
)

= F ′, Kδ0 is very small term so it can be neglected.
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Horizontal component of the system:

MẌ = Ff − F ′ sin γ − CẊ (1)

Where Friction force: Ff = µ(vr)Fn, and µ(vr) is the coefficient of friction between the mass
and the belt.
And vertical component:

Fn = Mg − F ′ cos γ = Mg −KH
(

1− L√
X2 +H2

)
(2)

Figure 1: a).The dynamical framework as self-excited SD oscillator where a mass-spring-damper
on a moving belt b).Stribeck friction model

The equation of motion for the above model can be obtain from Eqn.(1), by substituting the
value of Ff , F

′ sin γ and Fn

MẌ + CẊ +KX
(

1− L√
X2 +H2

)
= −µ(vr)

(
Mg −KH

(
1− L√

X2 +H2

))
(3)

The dimensionless equation of motion for the given framework can be gotten by expecting

x = X
L 2ζ = C

ω0M
ω0 =

√
K
M α = H

L v0 = V0
Lω0

τ = t
t0

t0 = 1
ω0

g1 = g
Lω2

0

The equation of motion is, in non-dimensional form:

ẍ+ 2βẋ+ x
(

1− 1√
x2 + α2

)
= −µ(vr)

(
g1 − α

(
1− 1√

x2 + α2

))
(4)

And according to Stribeck friction model, which shows the friction-velocity relationship for the
above model with boundary lubrication, friction function µ(vr):

µ(vr) = µssgn
(
ẋ− vb

)
− k1

(
v̇ − vb

)
+ k3

(
ẋ− vb

)3
(5)

With the help of Eqn.(5) one can transform the equation of motion into

ẍ+ 2βẋ+x
(

1− 1√
x2 + α2

)
+
(
µssgn(vr)−k1(vr) +k3(vr)

3
)(
g1−α

(
1− 1√

x2 + α2

))
= 0 (6)

where vr = ẋ− vb is non-dimensional relative velocity amongst mass and belt, and

k1 = 3
2
(µs−µm)

vm
k3 = 1

2
((µs−µm)

v3m

Note: where the dot indicates derivative w.r.t. time τ
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This equation of motion can be divided into two different phase on the basis of relative velocity,
the slip phase and the stick phase. Amid the slip phase, the mass and belt have diverse speeds
(ẋ 6= vb), so equation for the slip mode is given by:

ẍ+2βẋ+x
(

1− 1√
x2 + α2

)
+
(
µssgn(vr)−k1(vr)+k3(vr)

3
)(
g1−α

(
1− 1√

x2 + α2

))
= 0 (slip)

(7)
Throughout the stick phase, the mass and belt have equal velocity and so there is no acceleration
in the system(ẋ = vb). Eqn.(6) can thus be written as,

ẍ = 0 2βẋ+ x
(

1− 1√
x2 + α2

)
6 µs (stick) (8)

The above equations are differential equation and Eqn.(7) is having discontinuity. The solu-
tion of the above differential equation should be continuously differentiable and smooth in its
given domain. Here, spring is linear and the system is strongly non-linear due to the geometrical
configuration and a variable friction force, which is not only a function of the velocity ẋ, but
also of the position x.

By using the Taylor series expansion for 1√
x2+α2

, rewriting the equation:

1√
x2+α2

= 1
α −

x2

2α3 . Neglecting higher order terms,

ẍ+ 2βẋ+ x− x

α
+

x3

2α3
− x2

2α2
(µr) + ((µr)(g1 − α+ 1)) = 0 for (ẋ 6= vb) (slip) (9)

ẍ = 0 2βvb + x− x

α
+

x3

2α3
6 µs for (ẋ = vb) (stick) (10)

where µs is coefficient of static friction and vm is the velocity at which coefficient of kinetic
friction µm is minimum, where µm <= µs and k1, k3 > 0. From the Figure 1(b), it is clear
that µ <= µs, when the mass and the belt moves with same velocity (ẋ = vb, vr = 0), the
phase known as stick phase. When mass slides on the belt, friction force first decreases with the
velocity and then increases, this phase is known as slip phase (ẋ 6= vb, vr 6= 0).

From Eqn.(9),the mass has a static equilibrium at x = x̄ and ẍ = 0, ẋ = 0

x̄− x̄

α
+

x̄2

2α2

(
µs − k1vb + k3v

3
b

)
+

x̄3

2α3
− (µs − k1vb + k3v

3
b )(g1 − α+ 1) = 0 (11)

One can find x̄ by solving above equation numerically for particular cases, and it is taken that
x̄ = B (Expression for B is given in the Appendix). To study about the motion near this
equilibrium, origin should be shifted by defining,

u(t) = x(t)− x̄, ẋ(t) = ū(t) ẍ(t) = ü(t) (12)

By substituting the above value in the Eqn.(8) and (9), equation can be transformed into

ü+ u+ h(u, u̇, const) = 0 for (u̇ 6= vb) (slip) (13)

Where

h(u, u̇, const) = B + 2βu̇− u+B

α
− (µssgn(vr)− k1(vr) + k3(vr)

3)(u+B)2

2α2
+

(u+B)3

2α3
+ (µssgn(vr)− k1(vr) + k3(vr)

3)(g1 − α+ 1) (14)
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vr = u̇− vb

ü = 0 u+ 2βvb +B − u+B

α
+

(u+B)3

2α3
− µs ≤ 0 for (u̇ = vb) (stick) (15)

The equilibrium of the system at u = u̇ = 0 for the Eqn.(13) compatible to the steady state
sliding, where it is assumed that mass is at rest and belt slides along a smooth surface while
maintaining continuous contact with constant velocity vb. For Eqn.(13) and (15), two different
types of periodic solutions are possible. First one is pure-slip oscillation, where u̇(t) < vb; which
means that the velocity of the mass is always lesser than the speed of the belt vb, and second
one is stick-slip oscillation, where u̇(t) ≤ vb; it means that the velocity of the mass can be
equal(stick) to or lesser than the belt velocity(slip). Here viscous damping and dry friction will
take care of the energy stored by the spring, until a stationary state is achieved.

3. Numerical Simulations and discussion of the results
a b c
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Figure 2: One period of stick-slip displacements (first), velocity (second), and phase plane plots
(third row) for three different values of belt velocity vb. The value of parameters were used
for the plots: β = 0.05, µs = 0.20, µm = 0.05, α = 0.8 and (a) vb = 0.05, (b) vb = 0.20, (c)
vb = 0.405

Figure 2 describes the time history and phase plot figures for single cycle of stationary stick-
slip oscillations. These curves represent numerical simulation results of Eqn.(13) and (15).
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Each figure is plotted for one particular value of excitation speed vb with the parameter values
mentioned in figure 2. In figure 2(a) the belt velocity is small and corresponding to that,
oscillation amplitudes are reduces and stick phase takes a substantial part. From figure 2(b),
the belt velocity is mid-range velocity which yields stable oscillations, whose magnitude is higher
than that of figure 1(a); also stick phase is observed to be reduced. It is clear that when belt
velocity increases, stick region reduces and finally becomes pure slip at vb = vb0. It means that
there is no stick (horizontal line shows stick) region at a particular velocity, known as critical
belt velocity.
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Figure 3: Plot between stick-slip and pure-slip amplitude vs. belt velocity parameters used: β
= 0.05, µs = 0.20, µm = 0.05, α = 0.8.

Figure 3 is the variation of stick-slip and pure-slip displacement amplitudes with belt velocity
for particular values of typical parameters. Here A0 shows the amplitude during stick-slip
oscillation for vb < vv0 and A1 is the amplitude for pure slip oscillation. When the belt velocity
increases from zero, the stick-slip oscillation occurs with increasing amplitude until vb = vb0
beyond which pure-slip oscillation takes over. This pure-slip region occurs for very contracted
range of belt velocity until vb1, above which oscillation stops and steady slip attains stable type
of motion. Different types of graph are plotted below with belt velocity by changing the other
parameters. In figure 4(a) graph is plotted between amplitude vs belt velocity for different value
of geometrical parameter α, which shows amplitude increase as the value of α increases. But
the pure-slip region is same in both cases. the other parameters.In figure 4(a), graph is plotted
between amplitude vs belt velocity for different values of α, which shows amplitude increase
when the value of α is increased. Figure 4(b) which shows frequency is reduces as the value of
α increased. But the pure-slip region is same in both cases. Figure 5. shows the significance of
friction difference in stick-slip and pure-slip oscillation amplitude as a function of belt velocity. If
the difference between friction coefficient is small, the largest amplitude oscillation occurs at the
critical belt velocity vb0, provided the non-linearity is small. For the largest friction difference,
the occurrence of largest amplitude shifts to a velocity which is less than vb0. If the friction
difference is small, pure slip region is large and as the friction difference increases the pure
slip region gets smaller. For the smaller value of friction difference, the relationship between
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stick-slip amplitudes and the excitation speed is almost linear for smaller value of geometrical
parameter α.

Belt velocity

0 0.1 0.2 0.3 0.4 0.5 0.6

S
ti

c
k
-S

li
p
 a

n
d
 P

u
re

 S
li

p
 A

m
p
li

tu
d
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
α=0.2
α=0.5
α=0.7
α=0.8

Belt Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6

F
u
n
d
a
m

e
n
ta

l 
F

r
e
q
u
e
n
c
y

0

0.2

0.4

0.6

0.8

1

α=0.2
α=0.5
α=0.7
α=0.8

Figure 4: (a) : Plot between Stick-slip amplitude Vs Belt velocity for different values of alpha,
(b) Plot between fundamental frequency Vs Belt velocity for different values of alpha.
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Figure 5: Plot between stick-slip and pure-slip amplitude vs Belt velocity for different values of
µs−µm
vm

= (0.085, 0.12, 0.18, 0.25) and other parameters are β = 0.05, µs = 0.20, vm = 0.5.

4. Conclusion
This work attempts to study the amplitude of pure-slip and stick-slip oscillation of a self

excited SD oscillator placed on a belt moving with constant velocity under the presence of dry
friction. The mechanical model and mathematical formulation is done. Figure 3 shows pure slip
oscillations occur at higher speeds compare to stick-slip oscillation vb = [vb0; vb1] for a narrow
range, beyond which the model shows steady sliding with no oscillation. It is also clear that
pure slip is effected be the geometrical parameter α. Influence of system parameters along with
friction difference on vibration characteristics, such as amplitude and base frequency, is also
studied.
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Appendix

B = 1
3

(
α2

(
−6α+(−k1vb+k3v3b+µs)

2
+6

)
3√a+b + 3

√
a+ b− αµs + αk1vb − αk3v3b

)
A = α3D

(
D2 − 27g1− 18

)
− 18α4D

B =

√
α6
(

(6(α− 1)−D2)3 +D2 (18(α− 1) +D2 − 27g1)2
)

D = −k1vb + k3v
3
b + µs
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