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Abstract. The present work focuses on geometrically nonlinear transient analysis of laminated 

smart composite plates integrated with the patches of Active fiber composites (AFC) using 

Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been 

carried out using generalised energy based finite element model. The coupled 

electromechanical finite element model is derived using Von Karman type nonlinear strain 

displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-

parametric serendipity elements are used for discretization of the overall plate integrated with 

AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The 

numerical results shows the improvement in the active damping characteristics of the 

laminated composite plates over the passive damping for suppressing the geometrically 

nonlinear transient vibrations of laminated composite plates with AFC as patch material. 

 

 

1 Introduction 

Few decades back there has been improvement in the design of lightweight and flexible 

structures, laminated composite structures in the form of beams, plates and shells are being widely 

used in a large variety of engineering applications in aeronautical, mechanical, civil, chemical and 

other industries over the past few decades. These laminated composite materials are susceptible to 

large vibrations with long decay time because of their flexibility and low internal damping. Often 

structural fatigue and instability are the results of vibrations which lead to a serious deterioration of the 

structural performance induced by mechanical, thermal, hygrothermal or combined hygro-thermo-

mechanical loading. There are many types of useful active materials, such as shape memory alloys, 

electrostrictives, magnetostrictives, electro rheological fluids etc. Piezoelectric are the most popular 

smart material for adding smartness to the structures [1]. Piezoceramics have a high structural 

stiffness, which affords them a strong, voltage dependent actuation authority [2].  

The research on smart structures is concerned with the analytical solutions of piezoelectric 

laminated plate is carried out [3-6]. Exact analysis for static response of cross ply laminated smart 

shells with nonlinear deformations of piezoelectric composite beams with electromechanical 
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coupling [7-10]. Finite element analysis of laminate with piezoelectric sensors and actuators is 

performed [11]. Nonlinear vibration Analysis for transient vibrations of piezoelectric fiber-reinforced 

laminated composite beams is carried out [12-15]. 

 

2 Finite Element Model 

A smart rectangular laminated composite plate composed of N layer of orthotropic layers is 

described in figure 1. Four rectangular patches of ACLD treatment are placed on top surface and are 

placed centrally on the substrate plate. The constraining layer of ACLD treatment is made of the AFC 

material. The thickness of AFC layer is considered as ph and that of viscoelastic constrained layer of 

the ACLD is denoted by vh . The length and width of the plate are denoted by a / 2, b / 2  

respectively.  

 
                      Figure 1. Schematic  diagram  of  smart  laminated   composite  plates 

                      Integrated with the patches of AFC material in different configurations 

 

The mid-plane of the substrate plate is considered as the reference plane. The origin of the 

laminate co-ordinate system (x, y, z) is chosen on the reference plane in such a way that the 

boundaries of the overall plate coincide with the line x = 0, a and y = 0, b . Also, 1kh  and kh are the 

thickness co-ordinate z of the top and bottom surfaces of any layer respective where k is the layer 

number. In any layer of the substrate plate the fiber orientation angle with respect to the laminate 

coordinate system is denoted byθ . In case of constraining AFC layer of the patches the orientation of 

fibers with respect to laminate coordinate system is denoted by . The fibers are longitudinally 

aligned in the plane of the AFC layer parallel to xy plane.  

The axial displacements for modelling the kinematics of deformations of the plate coupled 

with the ACLD treatment are considered based on the FSDT. The schematic representations of the 

kinematics based on FSDT are illustrated in figure 2 and 3. Where, 0u and 0v are the generalized 

translational displacements of reference point (x, y) on the  mid-plane (z = 0) of the substrate 

composite plate along x and y axes respectively x , x and x are generalized rotations of the normal 

to the middle plane of the substrate, the viscoelastic layer and the AFC layer, respectively about y-

axis. Similarly y , y and y are generalized rotations of the about x - axis. As per figure 2 and 3 

the displacements u and v  at a point in any layer of the overall plate along x and y  directions, 

respectively can be given by, 
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In which, a function within the bracket represents the appropriate singularity functions for 

satisfying the continuity conditions between any two continua. 

For the simplification of the analysis, the generalized displacement variables are separated into 

translational  td  and rotational  rd variables as follows: 

                                      
      t rd = d + z d                                                  (2.4) 

  Where,     
T

d u v w ,    
T

t 0 0 0
d = u  v  w  and             

T

r x y y x y z x y zd            
  

In order to implement the selective integration rule for avoiding the shear locking in thin plates and for 

computing the element stiffness matrices corresponding to the transverse shear deformations, the state 

of strain at any point in the overall plate is divided into the following two strain vectors i.e. in-plane 

strains   b and transverse shear strains sh  and  

 
 

                     Figure 2. Deformation of any transverse cross-section of the laminated plate 

                     Integrated    with   the    ACLD   treatment   which   is   parallel  to  yz plane. 
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        Figure 3. Deformation of any transverse cross-section of the laminated plate  

        Integrated    with   the   ACLD   treatment   which   is  parallel   to  xz   plane 

 

are given by Eq. 2.5, similarly, state of stress is plate is given by following two stress vectors i.e. in-

plane stress  b  and transverse shear stress sh  and are expressed by Eq. 2.6. 

T
     b x y xy z{ε } = [ε ε ε ε ] and 

T
   sh xz yz{ε } = [ε ε ]

                                          
(2.5) 

T
     { }=[ ]b x y xy z     and 

T
   { }=[ ]sh xz yz                                            (2.6) 

The electric field in the AFC patches is considered to act only in the z and x directions respectively. 

Hence for the laminated composite plate coupled with the patches of the ACLD treatment the total 

potential energy PT and the kinetic energy KT  can be expressed as, 

k k

P

k N+2

N+2
T k T k

= b b sh sh i i

k=1 Ω Ω A

1
T ({ε } {σ }+{ε } {σ })dΩ - E D dv  - pwdA

2

 
 
  
            (2.7) 
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2

2 2 2

1

1

2 k

N
k

k

k

T u v w d





 
    

 


                                                          

(2.8) 

Where, p is externally applied transversely distributed load acting over a surface area A , kΩ  and 

k represent the volume and mass density of the 
th

k layer. The subscript i x  for AFC and z for 

PFRC material. The value of the k is 1 to N  for substrate, 1N for viscoelastic layer, 2N for the 

AFC layer and the dot ( ) over the variables denoted the derivative of respective variable with respect 

to time. 

The constitutive relations for the orthotropic layers of the substrate plate are given by, 

   k k k

b b bσ = C ε    and    k k k

sh sh shσ = C ε   k=1,2,3,……N  (2.9) 
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The material used for viscoelastic layer is assumed to be isotropic and behaves linearly. The 

constitutive relation for the time domain analysis of the overall plate undergoing ACLD treatment can 

be given by the Stieltjes integral [1]. 

 
 1

0

( )

t
N sh v

sh G t


  


 
  

                                            (2.10) 

where, ( )G t is relaxation function of viscoelastic material. Eight noded iso-parametric elements are 

used to discretize the overall plate. Now utilizing the constitutive relations given by Eq. 2.9, the total 

potential energy 
e

PT  of a typical element integrated with the patch of AFC material using ACLD 

treatment is given by 
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In the expression for 
e

PT  given in Eq.2.11, V  is voltage difference applied between the electrodes for 

AFC of the patch of ACLD treatment such that i

p

V
E

h
   (where i x  for AFC). The element 

stiffness matrices
e

tt
K   , 

e
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coupling vectors     / /,  ,  e e e
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where,  ea and eb  are the length and width of the element under consideration and the various rigidity 

matrices originated in the above elemental matrices. 

The expression for kinetic energy 
e

kT  of the element is given by, 
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As the thickness of the substrate plate is less, the rotary inertia of the overall plate has been 

neglected while calculating the kinetic energy of the plate. Using principle of virtual work, the 

following governing equations of motion of an element are obtained: 
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and 
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The values of e
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F will be zero for an element without integrated ACLD 

patch. On assembly the elemental equations turn out to be Global equations of motion which are given 
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in which [ ]M is the global mass matrix, [ ],  [ ],  [ ],  [ ],  [ ],  [ ],  [ ]tt tr rt rr tsv trsv rrsvK K K K K K K  are global 

stiffness matrices, rptpn tp{F }, {F }, {F } are global electroelastic coupling vectors, ttF , trF  are 

thermal related force vectors,{ },  { }t rX X  are global nodal generalized displacement vectors, { }F  is the 

global nodal mechanical force vector. The element stiffness matrices [ ],  [ ]tt trK K are quadratic in 

displacement variables. Thus the global equations of motion given by Eqs. 2.16 and 2.17 turn out to be 

nonlinear, where ( )
t

Z s  and  ( )
r

Z s are the Laplace transforms of  tZ  and  rZ  respectively. 

Using time domain representation of the auxiliary dissipation coordinates equation of governing 

coupled electro-elastic open loop behaviour of laminated composite plate integrated with the patches 

of ACLD treatment can be represented by  
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Where, zI and zrI are the identity matrices of appropriate sizes associated with the dissipation 

coordinates,  tZ and  rZ respectively. 
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3. Numerical results: 

In order to assess the performance of the ACLD patches made of AFC material in controlling 

the nonlinear vibrations of laminated composite plates, numerical results are computed using the finite 

element model. Both symmetric cross-ply and antisymmetric cross-ply thin square substrates 

integrated with four patches of ACLD treatment (Figure 1) is considered for evaluating the numerical 

results. The elastic and piezoelectric properties of the othotropic layers of substrate plates and the AFC 

patches are considered for evaluating the numerical results. The thicknesses of the AFC patch, the 

viscoelastic patch and the laminated plates are considered as 250 µm, 50.8 µm and 3 mm, 

respectively. Also, the orthotropic layers of the substrate plate are of equal thickness. Unless otherwise 

mentioned, the piezoelectric fiber orientation angle   in the AFC patch is considered to be 0°. 

Considering a single term GHM expression, the values of , ̂  and ̂  are used as 11.42, 1.0261e5, 

20 respectively. The shear modulus G
 and the density of the viscoelastic material v are 1.822e6 Pa 

and 1104 kg/m3 respectively. The mechanical load p acting upward is assumed to be uniformly 

distributed while the aspect ratio /a h  is considered to be 300. The boundary conditions used for 

evaluating the numerical results are considered as follows:   

 

Simply supported (SS1): 0 0 y y y
v = w = θ = = γ = 0  at  x = 0, a  

                                        0 0 x x xu = w = θ = = γ = 0  at  y = 0, b  

         Simply supported (SS2): 0 0 y y y
v = w = θ = = γ = 0  at  x = 0, a  

                  0 0 x x xv = w = θ = = γ = 0  at  y = 0, b  

                      Clamped (CC): 0 0 y y y
u = w = θ = = γ = 0  at  x = 0, a  

                                      0 0 x x xu = w = θ = = γ = 0  at  y = 0, b
 

 

The open loop and closed-loop behaviour of the substrates are studied by the evaluation of 

transverse deflection at the centre of the plate (a / 2, b / 2, h / 2)  on the top of the substrates. A 

uniformly distributed transverse pulse step load is applied to set the overall plate into motion. It has 

been found [8, 9] that if the value of the non-dimensional form 
4 4/ ( )TQ = pa E h   of the applied 

mechanical load exceeds the value 40, the overall plate undergoes nonlinear deformations. Hence, for 

the purpose of computing the nonlinear transient responses, the non-dimensional values of the applied 

pulse load are considered more than 50.  

Also to validate the present model for open and closed loop nonlinear transient responses 

using ACLD treatment made of AFC material for smart patches placed at the center and with identical 

conditions for a simply-supported symmetric cross-ply )o o o
(0 / 90 / 0 square substrate plate, the 

results shown in figures 5 and 6 indicate that the results obtained by the present scheme agree in an 

excellent manner with the existing one. Thus validating the present finite element model with ACLD 

treatment made of AFC material. 
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                   Figure 4. Comparison of present model for Nonlinear dynamic response 

                   of a simply- supported (SS1) symmetric cross-ply (0 / 90 / 0 )o o o
square 

                   substrate plate undergoing active constrained layer damping (  a/h=200  

                   Load=500 N/m2) using AFC material under   passive    mode ( dK =0 ) 

 
                     Figure 5. Nonlinear  dynamic  response  of  a   simply-supported  (SS1)  

                     symmetric crossply 
o o o(0 /90 /0 ) square substrate plate undergoing active  

                     constrained    layer    damping   ( for  a/h=300 ,    Q=100)   using   AFC 

 
                     Figure 6. Control   voltages   required   for   the   active constrained   layer  

                     damping of nonlinear transient  vibrations  of the  simply  supported  (SS1)  

                     symmetric cross ply
o o o(0 /90 /0 ) square substrate plate(for a/h=300 ,Q=100) 

                     using AFC 
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                  Figure 7.  Phase   plot of   the  simply  supported (SS1)  symmetric  cross  ply  

                 
o o o(0 /90 /0 )  square substrate plate when the  active constrained layer damping  

                  patches control the  nonlinear  vibrations (for  a/h=300 ,  Q=100)  using  AFC 

 
                  Figure 8. Nonlinear dynamic response of a simply-supported (SS1)  symmetric  

                  cross-ply    
o o o o(0 /90 /0 /90 )       square    substrate   plate   undergoing     active 

                  constrained    layer    damping     (for    a/h=300 ,  Q = 100)        using       AFC 

 
                   Figure 9. Control voltages required for the active constrained layer damping of 

                   nonlinear transient vibrations of the simply  supported  (SS1)  symmetric  cross 

                   ply 
o o o o(0 /90 /0 /90 ) square  substrate  plate (for a/h=300 ,  Q=100)  using  AFC 
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4. Conclusions: 

              A three dimensional finite element model has been prepared for identifying the performance 

of AFC material in controlling geometrically nonlinear static deformations of laminated composite 

plates. The numerical results highlighted that the AFC material shows the improvement in the active 

damping characteristics of the laminated composite plates over the passive damping for suppressing 

the geometrically transient vibrations deformations of laminated composite plates. 
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