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Abstract. Two models simulating the 4DL-reinforced imperfect material elastic behavior are 

analyzed. The model that involves direct introduction of an imperfect fiber-matrix contact is 

found to predict higher values for the compressive modulus of elasticity, rather than for the 

tensile one. This model also gives non-linear stress-strain diagram along some directions. Both 

models demonstrate a significant rigidity scale effect. Given the effects observed in actual 

practice with the materials of this class, conclusion was made about second model’s usefulness 

in engineering practice. 

1.  Introduction 

Currently, two basic simulation modeling concepts exist for simulating the behavior of composite 

material structures, namely, the effective modulus method and various approaches considering the 

material microstructure. The effective modulus method involves composite material replacement with 

a uniform, generally isotropic, medium, its properties being determined experimentally using 

representative samples of the material. As this method does not involve solving of any special 

mechanics problems, it is not resource-intensive and has been widely implemented. However, it fails 

to account for a number of effects observed in actual practice such as various scaling effects. Due 

consideration for the material microstructure provides closer reproduction of the actual material 

behavior, while requiring development of special simulation models and means. 

In terms of the microstructure approach, different concepts of material irregularity representation 

have been considered. The best understood and most widely used in engineering practice are methods 

based on analytic macro-/microstress-strain dependencies [1-4]. Such dependencies, while being 

relatively simple and easy-to-implement as a software program, provide limited accuracy due to the 

necessity of multiple arbitrary assumptions. Among numerical methods, those based on asymptotic 

approximation can be distinguished, as they provide more accurate solutions, while requiring an 

assumption about a small scale of irregularities (as related to the actual size of the structure in question) 

and their periodic arrangement [5, 6]. However, the method based on direct simulation of the material 

irregularity, followed by solving the problem using the finite element method or its equivalent, should 

be regarded as the most generic approach in terms of both the material nature and the simulated 

structure behavior. At the same time, its implementation consumes considerable computing resources. 

This paper addresses the 4DL-reinforced composite material elastic behavior with due account for 

the defect that is most frequently encountered in practice, while being ignored generally in the 

simulation models in use, namely, separation of the reinforcing elements (fibers) both from the matrix 

and from each other. The computations were based on direct simulation of irregular volumes of the 

material using the finite element method in the ANSYS software environment. 

2.  Task definition 
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For the ease of material simulation, a single structural cell of the material was taken (see Figure 1). 

The computational volume of the material was treated as composed of those structural cells. The 

volume length in the a direction – as 
al . The component elastic properties used in the computations 

are in accordance with the state-of-the-are composite material (see Table 1). 

 

Figure 1. The single structural cell of 

the material and chosen coordinate 

system. 

 

Table 1. The components elastic properties. 
  

Characteristic Value 

Longitudinal elastic modulus of the fiber 165 GPa 

Transverse elastic modulus of the fiber 3.59 GPa 

Longitudinal shear modulus of the fiber 3.84 GPa 

Longitudinal and transverse Poisson's ratios of the fiber 0.25 

Elastic modulus of the matrix 2.60 GPa 

Poisson's ratio of the matrix 0.25 

 

The composite material was deemed as composed of two components, a matrix and a reinforcing 

element – a core. The components were considered to be solid and uniform, the matrix – isotropic, and 

the fibers – transversally isotropic. 

The boundary conditions set for the material volume simulated the uniaxial loading of a test sample 

during experimental investigation of the material properties. Thus, under tension along the x axis, they 

were defined in accordance with [7] 
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 (1) 

Here ij  – stress tensor components, 
iu  – displacement vectors. The s value was chosen so as to 

provide deformation equal to 0.001, unless otherwise stated. For other load patterns, the boundary 

conditions were defined in similar fashion. 

The component separation in the material was simulated in two ways. In the first case, a dry 

friction contact was defined at the components interface. Such problem definition, while providing 

closer reproduction of the actual material, results in physical nonlinearity, thus adding complexity to 

the solution and failing to adjust the degree of material imperfection. In the second case, a special 

isotropic medium featuring small thickness and extremely low rigidness was introduced at the 

components interface, simulating the air gap. In this case, the problem remained linear, while by 

adjusting the rigidness of the medium it was possible to simulate partial destruction of the interface. 
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However, the operational convenience of this model was achieved at the expense of its adequacy to 

the actual conditions.  

As the value characterizing the material elastic behavior, the elasticity modulus was taken, being 

determined as follows: 
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Here W – total elastic energy of the volume. The choice of the calculation method was based on the 

stability of the results that depend only weakly on the special features of the finite element grid and the 

contact problem settings. 

In the computations, a finite element grid composed of mainly SOLID186 second-order 20-node 

solid elements was used. 

As a comparison object, the results obtained using the method described above for the separation-

free material were taken. 

3.  Main results 

In the first case (with the separation model), the elasticity module values obtained do not depend on 

the frictional coefficient between the material components. Moreover, with the frictional coefficient 

ranging from 0 to 0.5, the elasticity modulus data scattering makes up about 0.5%, meaning that the 

force transfer between the material components due to the frictional force is negligibly small. 

The elasticity moduli along the x and y axes show presence of the scaling effect. For the y axis 

elastic modulus dependence of the cell number is shown in figure 2. As can be seen in Fig. 2, 

magnitude of the scaling effect in each certain case being dependent not so much on the absolute 

volume of the material block under consideration as on the presence or absence of the reinforcing 

cores passing through the volume from one load-bearing facet to the other. The absolute value of the 

scaling effect, when loading along the x axis, is lower than that along the y axis, due to the presence of 

the cores oriented along the x axis. 

 
Figure 2. The elastic modulus dependence of the cell number for the y axis. 

Both effects described above take place both under tension and under compression; however, the 

elasticity modulus value itself depends on the load direction. That said, it is essential that the elasticity 

modulus value obtained under tension is smaller than that obtained under compression. This effect is 

at its greatest when applying loads along the y axis, in which case there may be a difference of tens of 

percent. This can be attributed to the fact that, when compressing a material volume, any separations 

contained within the material tend to close, therefore, the cores bear the loads almost similar to those 

in case of a solid material, while when under tension, any cracks tend to open wider, and the presence 

of the cores transverse to the load direction in the material has almost no effect on the material 

rigidness. On the other hand, this effect contradicts to the available experimental data, according to 

which, materials of the type under consideration usually show better rigidness under tension than 

under compression, thereby demonstrating that the modulus difference revealed in the material can be 

attributed primarily to the special nature of the material components rather than the presence of 

component separations within the material volume. 
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The compressive stress-strain diagram is of non-linear nature, with the material rigidness growing 

as the deformation increases. Figure 3 shows an example of the compressive stress-strain diagram 

along the y axis for a single cell. The tensile stress-strain diagram is approximately linear. Such a 

difference between material behaviors under tension and compression loads may explain the 

corresponding elastic moduli values inequality. 

 
Figure 3. The compressive stress-strain diagram along the y axis for a single cell. 

As should be expected, the general level of the material rigidness is lower than that in case of a 

perfect material, which is well illustrated by the data given in Table 2. 

Table 2. Elastic modulus of the perfect and imperfect composite under the tensile stress. 

Volume 

structure 

Elastic modulus of the perfect material, 

GPa 

Elastic modulus of the imperfect 

material, GPa 

x axis y axis z axis x axis y axis z axis 

1×1×1 29.8 7.1 37.3 26.45 0.53 33.20 

2×2×2 29.9 10.9 37.4 26.87 0.72 34.84 

3×3×3 30.0 14.3 37.4 26.86 0.73 34.85 

Since no complete core/matrix separation has been observed in reality, to substantiate the aforesaid 

effects, computation was performed for a material volume composed of 3×3×3 cells, where the 

separations were localized in the central cell. The results of the calculations show that the 

delamination effect on the average elasticity modulus does not exceed 3%. Also average value of 

elasticity moduli in tension and compression coincide with high accuracy. Thus, there is influence of 

local delamination on the average stiffness is virtually nonexistent in the real material. 

Computation results obtained using the second model showed that in this case, the material behave 

as a linear one both under tension and under compression. Moreover, no material modulus difference 

is shown by the results. Comparing to first model results, obtained y axis modulus is significantly 

lower because of there is no direct contact between cores and matrix in the second model. In respect 

that the level of imperfect material y axis modulus is extremely low and the local delamination 

influence at large volume elastic moduli is rather negligible, we may disregard such a difference. It 

should be noted, however, that within the framework of such a problem definition it is incorrect to 

perform computations for large deformations, since starting from a certain deformation point, the 

separation-simulating gaps close, thus necessitating relevant changes in the finite element grid. 

Also it was shown that the elastic moduli values depend significantly on the material structural cell 

choice. As can be seen in Table 3, the elasticity modulus values obtained with different cell 

assignment differ highly. This effect should be investigated in more detail further. 
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Table 3. Elastic modulus of the imperfect composite under the tensile stress. 

Volume 

structure 

Elastic modulus of the general cell, GPa Elastic modulus of the modified cell, GPa 

x axis y axis z axis x axis y axis z axis 

1×1×1 26.78 0.53 34.82 26.45 2.59 33.20 

2×2×2 26.87 0.72 34.84 28.53 8.45 34.49 

3×3×3 26.86 0.73 34.85 28.49 13.22 35.18 

4.  Conclusion 

Analysis of the computation results shows that all the effects observed agree qualitatively with the 

existing understanding of the peculiarities of the imperfect material behaviour. The results obtained 

using different models show sufficient agreement. 

The first model allows for observing the difference in the material stress-strain state that develops 

under tensile and compressive loads. With this model, it is also possible to predict successfully the 

material behavior, including non-linear one, at large deformations; however, the effects predicted 

therewith do not manifest themselves to a large extent in real materials. This fact makes it possible to 

conclude that the material defect such as component separation has a very small impact on the 

observed values of the actual 4DL reinforced material elasticity modulus. 

That being said, given the negligibility of these effects in the actual practice, the second model 

seems to be more useful due to its simplicity, smaller computational resource requirement and the 

ability of simulating, to some extent, partial destructions in the material, reducing the whole of the 

local separations to a single value very similar to the degree of destruction in some kinetic criteria of 

strength. At the same time, when it is necessary to simulate exactly the local state of the material in the 

fiber/matrix separation area, the first model seems to be quite applicable as well. 

The results obtained attest to long-term benefits of this line of research aimed at the development of 

structural simulation models for 4DL reinforced materials. As an interesting subject for further study, 

the local stress state of material components, either with or without components separation, can be 

investigated. 
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