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Abstract. Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) 

substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, 

chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray 

photoelectron microscopy, transmission electron microscopy whereas mechanical properties 

were determined by nano-indentation measurements. XRD results showed a prominent (200) 

reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid 

solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and 

crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating 

that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by 

TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an 

amorphous/nanocrystalline domains (grains of about  11 nm) and hardness increases 22% 

when compared with pure CrN film.  

1. Introduction 

Binary and ternary transition metal based nitride materials are applied in various industrial as well as 

engineering applications owing to their significant physical, chemical and mechanical properties 

including enhanced oxidation and corrosion resistance [1-3]. Nowadays, most metal formed or molded 

components are coated with chromium nitride (CrN) to improve the corrosion and oxidation resistance 

under severe environmental conditions [4-5]. However, due to limited hardness of CrN and its poor 

wear resistance, restricts its applications in the field of engineering such as machine parts, drills and 

cutting tools [6]. On the other hand, addition of Al, into CrN leads to the formation of a 

nanocomposite structure comprising of two phases, CrN/AlN, which helps in overcoming the issue of 

high temperature instability and gives higherhardness (>30 GPa) and enhanced anti-corrosion 

resistance, making chromium-aluminium-nitride (Cr-Al-N) films superior to CrN especially enhancing 

oxidation resistance at high temperatures. Microstructurally, formation of AlN phase at the CrN grain 

boundaries, helps suppress the oxidation in these high diffusive paths, and shields the enclosed two-

phase CrN/AlN nanocomposite structure [7-9]. 

Up to now, nanocrystalline CrAlN composite films have been deposited by various techniques which 

include vacuum arc reactive deposition process, [10, 12], chemical vapor deposition (CVD) [13], and 

dc/rf reactive magnetron sputtering [14,15]. The crystal structure, microstructure, concentration, and 

corrosion resistance of these nanocomposite films have been studied in comparison with conventional 

binary nitrides of CrN and AlN films. However, due to lack of in-depth study on chemical bonding 

status and microstructure for sputter-deposited CrAlN films generates curiosity to investigate. In our 
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investigation, the effect of the small amount of Al added to CrN matrix on bonding status, 

microstructure and mechanical properties of CrAlN films is reported, in which new features which 

were not covered previously are presented here. X-ray photoelectron spectroscopy (XPS) was 

employed to investigate the chemical bonding status in the films. Phases in the films were revealed by 

X-ray diffraction (XRD). Nano-structural evolution was studied by employing high-resolution 

transmission electron microscopy (HRTEM) and transmission electron diffraction (TED). The 

mechanical properties were obtained by nanoindentation technique.  

 

2. Experimental 

CrN and CrAlN films with various Al contents were deposited onto Si(100) substrates using a close-

field unbalanced dc-magnetron sputtering system (UDP650, Teer Coating Limited) with four high-

purity targets (three Ti and one Al)  in a mixture of Ar and N2 gases. The substrates were 

ultrasonically cleaned in acetone then dried andplaced into the vacuum chamber. The base pressure in 

the chamber was 2×10
-6

 Torr, and the working pressure, was set at 1.5 mTorr. The Cr target current 

was set at 5 A and Al target current ranged from 0 to 10 A in order to acquire films with varied Al 

concentrations. The films deposited are namely, A0, A1, A2, A3, A4, A5, and A6. Film A0 is pure 

CrN and A6 with Al current of 10 A has the highest Al content of 24.1%. With target current ratio 

(IAl/ICr) ranging from 0 to 2.0, the atomic ratio of Al/(Cr+Al) could be increased from 0 to 0.48 (in 

Table 1 in Section 3). The substrate rotation speed was 10 rpm. Films nominal thickness was 600 nm 

at a bias voltage of -80 V (250 kHz).  

The crystal structure of the films was characterized by XRD using a Bragg-Brentano diffractometer 

(Simens D500). The elemental concentration and bonding status were investigated by XPS (PHI 

Quantum 2000) having monochromatic Al Kα X-ray source (hv=1486.6 eV) induced by 13 kV, 25 mA 

Al kα radiation. The nanostructure was analyzed by HRTEM (field emission JEOL 2010F) at 200 kV. 

Nanoindentation tests were repeated 8 times and depth was at 10% of the film thickness. 

 

3. Results and discussion 

The measured results for the films are shown in Table 1. 

 

Table 1. The IAl/ICr target current, elemental concentration, grain size, hardness, Young’s Modulus and 

H/E ratio of sputter-deposited CrAlN films. 

Sample Target 

Current 

ratio 

(IAl/ICr) 

Al 

content 

(at. %) 

Al/(Cr+Al) 

ratio 

N 

content 

(at. %) 

Grain size 

D (nm) 

H(GPa) E(GPa) H/E 

ratio 

A0 0 0 0 47.5 11.8  0.2 18.8  0.7 225.0  6.2 0.083 

A1 0.2 2.3 0.04 48.4 11.5  0.3 21.8  1.0 233.2  8.6 0.093 

A2 0.4 6.3 0.12 49.8 11.3  0.2 22.5  1.3 242.1  11.4 0.097 

A3 0.8 12.8 0.25 48.7 11.4  0.2 21.4  1.3 233.0  9.6  0.092 

A4 1.2 17.1 0.33 49.2 11.1  0.2 22.0  1.2 233.5  10.6 0.094 

A5 1.6 21.5 0.43 50.3 10.7  0.2 22.8  1.2 238.0  8.9 0.095 

A6 2.0 24.1 0.48 49.2 10.8  0.2 24.0  0.9  255.0  8.5 0.096 

 

3.1 Crystal structure by XRD  

The influence of Al doping on the lattice parameter of CrAlN films can be seen in Fig. 1. The inset of 

Fig. 1 shows the XRD patterns of CrAlN films (A0 to A6).  
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Figure 1. Dependence of lattice parameter in CrAlN films against Al content. Inset shows XRD 

patterns of pure CrN (A0) and CrAlN (A6) nanocomposite film with Al content of 24.1 at.% (S 

represents the substrate peak). 

 

All deposited films exhibit polycrystalline structure. A B1-NaCl type cubic structure is observed in all 

the films [16-18]. Pure CrN film (A0), like all other films, prepared at substrate bias voltage -80V 

shows orientation of CrN (200) plane, which is a low intensity reflection. However, the broad peak 

indicates that the deposited film is not well crystallized at all and mostly amorphous at low substrate 

bias voltage, which is consistent with the previous report [19]. No other crystalline phase is identified 

in the XRD pattern of this film. In all our films, the orientation of the CrN (200) plane is due to the 

lowest surface energy of the crystal plane, similar to the results previously reported [20]. When the 

energy of incident ion bombardment increased during deposition, the CrN (200) plane was 

preferentially grown in order to reduce the surface energy [21]. The orientation (200) for A0 film, is 

identified at ~43.5
o
, which is lower than the standard powder diffraction peak according to 

PCPDFWIN Version 2.3, JSPDF-ICDD (2002), suggesting occurrence of some stresses in the film. 

The diffracted (200) peaks obtained from film A3 with 12.8 at.% of Al content and film A6 with 24.1 

at.% of Al are identified at ~43.6
o
 and ~43.7

o
, respectively. It is noted that addition of Al results in 

enhanced crystallization, which is evidenced by the increase in CrN (200) peak intensities. It is also 

noted that a peak split occurs from film A3 onwards, resulting in a mixed peak consisting of (Cr,Al)N 

and CrN(200). Increasing Al content slightly shifts (200) peak towards a higher diffraction angle. Such 

a deviation towards a higher diffraction angle between the standard CrN (200) peak and that of CrAlN 

films is attributed to decrease of a lattice parameter in CrAlN films. The obvious gradual decrease in 

lattice parameter from 0.415 nm (A0 film) to 0.412 (A6 film) can be seen in Fig. 1, confirming the 

integration of Al atoms into cubic CrN lattice. The reason being,the covalent radius of Al (0.121 nm) 

is smaller as compared to Cr (0.139 nm) and makes possible to initiate the crystal lattice distortion 

(lattice contraction) which is in good agreement with previous studies [22, 23]. Also, when Al content 

is ≥ 17.1 at.%, the CrN (200) peak intensities are significantly decreased implying that crystallites in 
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the film became smaller and moreover, the CrN (111) peak with a weak intensity appears at ~37.2
o
. At 

Al content of 24.1 at.%, the peak intensity of CrN (111) is found to increase. It has been reported [22] 

that since increasing Al substitution causes lattice distortion resulting in an increase in the film’s strain 

energy, thus to combat the increase in the strain energy, a tendency of change of preferred orientation 

from (200) to (111) is seen. Moreover, for the film with Al content of 24.1 at.% (A6), there is no 

evidence of the presence of w-AlN (B4-Wurtzite type) structure [18].The reason is that there is a 

maximum solubility of cubic Al  77 at.% in cubic CrN in order to see the crystal structure change 

from B1-NaCl to B4-wurtzite (which is AlN phase) [16-18]. Al contents in our films are much less 

than the maximum solubility limit. But such a change in crystal structure has been also reported [17, 

18] at much lower Al content (58 at.%). In our case, the fact that the observed peak (200) broadening 

as well as splitting in the films is very prominent, suggesting probable phase formation of either c-AlN 

and c-CrN or combination of other (Cr,Al)N phases or sub-stoichiometric grain formation.  

 

3.2 Chemical analysis by XPS and Microstructure evaluation by HRTEM analysis 

Figure 2 shows Cr 2p, N 1s and Al 2p XPS core-level spectra of pure CrN (A0) and CrAlN (A6) films 

to illustrate the development of chemical states in the films due to Al addition. The metal Cr peak 

consists of two peaks originating from Cr 2p3/2 and Cr 2p1/2 bonding states. Fig. 3(a) is the 

deconvolution of the Cr 2p3/2 peak of A0 film, indicating the existence of two peaks centered at 575.0 

eV representing a CrN phase whereas peak at 576.6 eV occurs because of the existence of Cr2O3. 

Peaks related to pure Cr at 574.3 eV and Cr2N at 574.5 eV were not present [24]. The N 1s spectra of 

A0 film in Fig. 3(b), shows the existence of CrN peak at 396.8 eV and a weaker peak at 398.3 eV 

which can be related to surface oxidation [25]. The XPS core-level spectra of CrAlN film (A6, with al 

content of 24.1 at.%) are shown in Fig. 3(c). The peak related with Cr was centered at 575.0 eV 

originating from Cr 2p3/2. The deconvolution of Cr 2p3/2 peak showed that it contained three peaks 

positioned at 575.0 eV, representing a CrAlN phase, peak at 575.7 eV being a CrN phase and 577.5 

eV representing a Cr2O3 phase, respectively. Metallic Cr and Cr2N were once again not observed [24]. 

The Al 2p spectra in Fig. 3(d) showed characteristic peaks at binding energy 73.5 eV originating from 

CrAlN, whereas peak at 74.3 eV is from AlN and the peak at 77.6 eV represents Al2O3 phase. In Fig. 

3(e) the deconvoluted spectra of N 1s showed a typical peak of CrN at 396.21 eV along with weaker 

peak at 397.4 eV that could be related to AlN [23, 26]. 

TEM observations were performed to determine the microstructural difference and phase formation of 

the films due to addition of Al. Figure 3 depicts the plane-view TEM images and the insets are 

corresponding selected area diffraction patterns (SAED) of pure CrN (A0) and CrAlN (A6) films. The 

inset in Fig. 3(a) shows diffused scattering, producing a continuous ring pattern indicating lack of 

significant crystallinity, which is in agreement with the XRD results. Basically, can be understood as, 

a microstructure that comprises of crystallinity and amorphous region that co-exists. A continuous ring 

is a consequence of the fine and small size of grain distribution whereas diffuse scattering is a 

consequence of mostly amorphous AlNx region in the film. Fig. 3(b) shows a HRTEM image of 

CrAlN (A6) film with Al content of 24.1 at.%. The corresponding electron diffraction rings are shown 

in the inset. These diffraction rings show sharp diffraction spots in a circle typical for polycrystalline 

material. Moreover, the Cr(Al)N solid solution which is a nanocrystalline phase has already been seen 

in our XRD and XPS results. The amorphous phase AlN is marked by white circles in the TEM image. 

On comparing the two SAED inset images in Fig. 3, we can see that there is a marked difference 

between diffraction ring patterns of both CrN (A0) and CrAlN (A6) films. 
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Figure 2. XPS core-level spectra of pure CrN 

(A0) and Cr-Al-N films (A6).  (a) Cr 2p, (b) N 

1s, (c) Cr 2p, (d) Al 2p, and (e) N 1s. 

Such an observation was possible with TEM method as a local character of the material can be 

achieved when compared with XRD or XPS results. The SAED pattern in the inset of Fig. 3(b) clearly 

shows the diffraction rings for cubic phase nano-crystalline structure, which can be understood as 

solid solution of Cr(Al)N matrix embedded with few amorphous region (AlN). The film with Al 

content of 24.1 at.% in Fig. 3(b) shows a grown crystalline phase with grain sizes of ~11 nm, in good 

agreement with our XRD peak width results (calculated average grain size of 10.8 nm). 
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Figure 3. (a) Plane-view TEM image of pure CrN film A0 with SAED pattern in the inset; (b) 

HRTEM image of CrAlN film A6 with SAED pattern in the inset depicting amorphous/crystalline 

microstructure. 

 

It is noted that although the Al content is only 24.1 at.%, but still promotes amorphous/crystalline 

microstructure. Also, to quite an extent, the amorphous/crystalline microstructure shows distinction of 

crystalline and amorphous phases that occur in this film. Low concentration of Al atoms will either 

substitute Cr atoms forming solid solution or having an interstitial substitution due to small atomic 

radii of Al. In addition, distinctive phase separation might be also possible with Al content of 24.1 at.%  

in the film. 

 

3.3 Nanohardness 

The mechanical properties of the CrAlN films were significantly affected by Al concentration. Nano-

hardness and Young’s modulus of the films as a function of Al content are shown in Table 1. The 

hardness and Young's modulus of the CrN (A0) film are 18.8 and 225 GPa, respectively. For the film 

A2 with 6.3 at.%, both hardness and Young's modulus values increased to 22.5 and 242 GPa. 

Evidently, the solid solution hardening effect contributed to the increase in the hardness of the film 

[27]. When the Al content was increased to 24.1 at.%, the hardness and modulus of the film further 

increased to maximum value of 24 GPa and 255 GPa, respectively. It is reported that the effects of 

solid solution hardening as well as nanocomposite interface strain strengthening mechanisms [1,2] are 

considered together for the hardness enhancement in the film. Increase in Al content has resulted in 

the decreases of the grain size too from 11.8 to 10.8 nm (based on our XRD results), consequently 

increasing the hardness which also suggests that high Al concentration in the film supported 

crystalline grain formation with less volume fraction of AlN amorphous regions. The ratio of hardness 

to Young’s modulus H/E is considered as an important parameter that reflects the fracture toughness 

and wear properties of the films [28, 29]. The H/E ratio against Al content shows an analogous 

progression with films hardness. The film with Al content of 6.3 at.% has the  highest H/E ratio 0.097. 

The hardness of A6 film is low as compared to the previously published result [30] reporting 36 GPa 

(with 30 at.% of Al). In some regions, interdiffusion between the CrN and CrAlN phases could have 

led to comparatively a lower hardness. Previous report [26] explained that the presence of an interface 

energy difference between the crystallite/amorphous phase and grain boundary leads to the formation 

of amorphous phase which is settled at the grain boundary and can be seen in Fig. 3(a). For that reason, 

the mechanical properties  of CrAlN films are superior than pure CrN film (A0) film, respectively. 

 

4. Conclusions 

At substrate bias voltage of -80 V and by varying target current IAl/ICr ratio, a set of CrAlN films 

consisting ofvarious Al concentrations were successfully deposited by dc magnetron sputtering 

technique. All films exhibited B1 NaCl structure. The changes in the film chemistry due to the 

addition of Al in cubic CrN were investigated by XRD, XPS, TEM and nanoindentation tests. The 



7

1234567890‘’“”

MEACM IOP Publishing

IOP Conf. Series: Materials Science and Engineering 307 (2018) 012079 doi:10.1088/1757-899X/307/1/012079

 
 

results showed that increasing target current IAl/ICr ratio during deposition produced films with 

different Al contents, which affect the structure, phase, microstructure and hardness of the films. XRD 

data of CrN film showed orientation along (200) and also revealed the transition from amorphous to 

promotion of crystallinity in the films due to Al addition. Cr-Al-N films crystallize in cubic structure, 

with a preferred (200) orientation for all. The XRD results showed that fcc CrAlN films form a solid 

solution whereby Al atoms substitute Cr atoms. Results of XPS and TEM show clear incorporation of 

Al into CrN matrix resulting innanocomposite microstructure comprising of nanocrystallites and 

amorphous regions. The nano-hardness increased to 24 GPa with the increase in Al concentration. 

Maximum hardness obtained for CrAlN film is 22% superior to pure CrN film. 
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