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Abstract. Within the last decades significant improvements in the spatial resolution of
electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In
contrast, the quantification procedures essentially remained unchanged. As the classical
procedures assume either homogeneity or a multi-layered structure of the material, they limit
the spatial resolution of EPMA. The possibilities of improving the spatial resolution through
more sophisticated quantification procedures are therefore almost untouched. We investigate a
new analytical model (M;-model) for the quantification procedure based on fast and accurate
modelling of electron-X-ray-matter interactions in complex materials using a deterministic
approach to solve the electron transport equations. We outline the derivation of the model from
the Boltzmann equation for electron transport using the method of moments with a minimum
entropy closure and present first numerical results for three different test cases (homogeneous,
thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases
show that the Mi-model is able to reproduce the electron dynamics in EPMA applications
very well. Compared to classical analytical models like XPP and PAP, the M;-model is more
accurate and far more flexible, which indicates the potential of deterministic models of electron
transport to further increase the spatial resolution of EPMA.

1. Introduction

Electron probe microanalysis (EPMA) provides a popular method to obtain quantitative
information about the chemical composition of heterogeneous materials, particularly fine
structures and grains in metals and alloys. As an imaging technique, it poses an inverse problem,
as the chemical concentrations are not measured directly, but have to be reconstructed from
intensity measurements of X-rays.

Usually, the experimental intensities are normalised to so-called k-ratios kP*P and the
simulation of a forward model provides computed k-ratios kM (c) that depend on one or more
assumed elemental concentration fields ¢(x) inside the probe. The inverse problem [1,2] consists
of finding the concentration ¢* that minimises the error between the experimental and simulated
k-ratios kM.
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Problem 1 (Inverse problem)
Find ¢* such that
¢ = argmin||kM(¢c) — kP2 (1)

with some appropriate norm || - ||.

Obviously, the reconstructed concentration c(x) inherits fundamental characteristics like
accuracy or assumptions on the material structure from the forward model used to compute
kM (c). Moreover, the forward model substantially determines complexity and computational
cost of the inverse problem. Therefore, the choice of the forward model kM (c) is crucial for both
computational speed and accuracy of the reconstruction of concentrations c(x).

Most analytical methods used nowadays use simple forward models, which either assume that
the sample is homogeneous within the interaction volume [3,4], or are based on the calculation
of the ¢(pz) distribution [5-9], where the latter model the probability of ionisation as a function
of depth, expressed in mass thickness. Both types impose strong restrictions on the range of
material structures to which they can be applied. The former are only applicable to structures
that exceed the interaction volume and the latter require the composition to only vary as a
function of depth, like thin films or multi-layers. One approach to improve the spatial resolution
of EPMA is to use forward models with less or no restriction on the material structure.

When more complex concentration distributions are of interest, Monte Carlo simulations
of the electrons inside the probe typically replace analytical models [10-14]. While these
simulations exhibit very good physical accuracy, they are also computationally expensive and
suffer from statistical noise. This makes the solution of the inverse problem to recover the
chemical composition difficult.

Hence, we believe that more sophisticated forward models that balance computational effort
with accuracy have to be developed in order to improve the spatial resolution of EPMA.
Attempts on deterministic modelling of electrons inside solids to predict characteristic quantities
like backscattered electrons and emitted X-rays used in quantitative EPMA have been made
earlier [15] and similar approaches to modelling particle transport are also common in nuclear
engineering [16] and electron radiotherapy [17,18].

This paper investigates a new forward model for the prediction of local ionisation intensity
for arbitrary concentration distributions, which conceptually is found between analytical models
and Monte Carlo simulations. It uses a deterministic reduction technique to solve the electron
transport equation as a partial differential equation. The reduction is based on the minimum
entropy approach [19-21], yielding closed moment equations from the Boltzmann equation for
electron transport in the continuous slowing down approximation. The simplest case is given
by the so-called M; model, which computes the local electron energy distribution directly in
a deterministic noise-free way. This allows a very efficient computation of the local ionisation
intensity and also allows to use modern optimisation techniques for partial differential equations
to solve the inverse problem (eq. (1)).

2. Transport theory

2.1. Boltzmann equation for electron transport

The starting point for the derivation of the model is the Boltzmann equation for electron
transport, which follows from balancing the physical processes influencing the number of
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electrons n with velocity v at space point  and time ¢ in a stationary background medium
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The solution n : R3 x R3 x R>¢ — R>q is a phase density, such that n(z,v,t) is the probability
density of finding an electron at position z with velocity v at time t. The background medium
is modelled by Ny (z), the number density of scattering centres at position z, and the scattering
cross-section & (z, ||v']], ||v||, v"-v), describing the probability that an electron changes its velocity
from v’ to v when hitting a scattering centre at space point x. Note that we assume the
background material to be isotropic, as the scattering cross-section 6 does not depend on the
pre- and post-collision velocity vectors v’ and v separately but only on the magnitudes and the
angle between both vectors.

In the context of EPMA, the time scale of the physical processes is very small compared to
the duration of the measurement. Therefore, we can assume that the distribution of electrons
inside the material reaches a steady state immediately after switching on the electron beam and
thus neglect the time dependency (0/0; - = 0).

Before deriving the reduced model it is convenient to rewrite eq. (2). First, we perform a
transformation to energy and direction by expressing the velocity and scattering cross-section
as functions of energy € and direction €2

v(e, Q) = [lo(e)[[2 3)
o(z, e, 6,0 Q) =6(, o)l [lu(e)]l, v(€) - ve)). (4)

We then split the scattering cross-section into an elastic (¢' = €) and an inelastic (¢' > €) part
(0 = 0¢l + 0in). Finally we define

P(x,€,Q) = [lo(e)[n(z, v(e, Q2)) ()

and obtain
Q- Va(z,6,Q) = Ny(z) / / oin(z, €, 6,0 Q)p(x, €, Q)dQ de'
€ 52

+ Ny (z) /Sz ga(w, 6, Q- )p(x, e, )dY (6)
— Ny (2)ot(z, €)¢(z, €, Q)

m

- NV(x)Ucte?t<xv 6)1/1(957 € Q)

with the total scattering cross-sections o'*(z,e) = 2m f_ll ooz, €, p)dp and ol (z,e) =
2m [y fil ow(z, ¢ €, p)dude’ where p = cos(f) with @ being the deflection angle. S? denotes
the sphere with radius one (unit 2-sphere) and accordingly the integral over S? in (6) is over all
directions Q. 9 can be interpreted as an electron fluence in the sense that ¢ (x, €, Q)dQded Adt
corresponds to the number of electrons that traverse an area dA perpendicular to 2 with a

direction within the solid angle d2 around 2 at an energy within [e, € + de] at point = during dt.
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2.2. Continuous slowing down approximation

As a first simplification, the continuous slowing down approximation for the energy loss of the
electrons is used. The same simplification appears in all analytical models and almost all Monte
Carlo models, e.g., [11,13]. The simplification is based on the assumption that an electron
loses a significant amount of energy through a very large number of collisions, with any single
collision changing the energy of the electron only slightly. In this case, the inelastic scattering
cross-section is peaked about small energy losses and an asymptotic analysis with respect to
energy on the inelastic in-scattering term in eq. (6) yields the following approximation

Nv(x)/ /52 oin(z, €6, U)p(z, €, Q)dY de
‘ (7)

~ Ny (z) /52 agSD(x, 6, Q- Q)p(x, e, V)dY + 886(5(30, e)p(xz,e,Q))

with
00 00 1
o5P (z, e, 1) = / oz, e, €, pu)de S(z,e€) = 277/ / (e — €)owm(z, €, €, p)dude .
0 o J-1

Insertion of the approximation eq. (7) into eq. (6) results in the Boltzmann equation in continuous
slowing down approximation (BCSD). The term —0/0,(S%) can be interpreted as a transfer from
higher to lower energies, with the stopping power S governing the speed of this transfer.

3. Continuum approximation
Knowing the electron fluence v we can compute the intensity of a specific characteristic X-ray
generated at point x from (cf. [22])

loj(2) = w; Nv,j(ﬂc)/0 Tion,j(, €) /Sz U(x, e, Q)dQde (8)

where w; and oion; are the fluorescence yield and ionisation cross-section of some chemical
element identified by j. Note that detailed information about the angular distribution of the
electron fluence v is not necessary to evaluate eq. (8), as only the average in angle of v is
required. This, and the fact that solving the BCSD is computationally very expensive due
to the high dimensionality of v, motivates further simplification with respect to the direction
variable €.

3.1. Method of moments

The method of moments is a mathematical concept to reduce the dimension of the phase space
in differential equations by integrating out selected independent variables of the phase space. Its
objective is to derive equations for weighted integrals of the unknown, the so-called moments,
and solve for these instead. As we want to eliminate the direction €2, our moments of interest
are integrals of 1 over the unit 2-sphere weighted by polynomials of the direction 2

W (z,€) = /SQQ®...®Q¢(x,e, Q)dQ. (9)
n times

The moment equations follow from multiplying the BCSD equation with monomials in €2,
integrating over the unit 2-sphere and identifying the moments. Here, we choose the simplest
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case of only the first two moments and therefore consider moments of up to first order (n =0, 1)
for which we get the following moment equation system

(S, (2, )) + o = 0 (10)
(S, P a,€)) + Vo = TV (1)

with

1

T(x,¢) = 27Ny () /

-1

=) (sateen) [ onte e dn (12)

Note that the zeroth moment () corresponds to the integral of ¢ in eq. (8). Hence, the
theory computes essentially only the quantity of interest. Due to the divergence-term in the
BCSD equation, the system of moment equations contains higher order moments and is thereby
underdetermined. In order to obtain a closed system of partial differential equations, a closure
relation that expresses the highest order moments as a function of the moments of interest

@ = @ (O 1)) (13)

has to be defined. The closure is crucial for the accuracy and mathematical properties of the
moment equation system and should be chosen carefully.

3.2. Minimum entropy closure

The minimum entropy closure is physically motivated. It can be thought of as choosing the
electron fluence 1 such that it minimises the Boltzmann entropy for a one particle system while
generating a given set of moments ¥ i = 0,...,n and using it to close the system of moment
equations by simply evaluating the integral expression of the highest moment.

Problem 2 (Minimum entropy closure)
1. Find ¥\g so that

ME = arg min <— 1/110g(1/1)dQ> such that / QppdQ =@ 0<i<n (14)
P S2 S2
2. Compute ") from Yyg
i (@ e) = / QU Dy, €, Q)dQ. (15)
SQ

This procedure yields the so-called Mj-model for electron transport [19-21]. Figure 1(a)
visualises a histogram for the direction of travel of electrons in a homogeneous sample generated
during a Monte Carlo simulation. The sample is subdivided into rectangular cells with each cell
containing a group of lines. The lines visualise the direction of travel distribution in the cell by
pointing in the corresponding direction (taking the cell centre as starting point) and having a
length proportional to the number of electrons moving in this direction. For a better orientation,
the mean energy of electrons is plotted in the background. From fig. 1(a), it is clear that the
electrons are in a well structured configuration, enforced by the electron beam, when entering
the sample. As the electrons penetrate the material they are deflected through collisions and
the direction of travel distribution is more and more spread over all directions. Minimisation of
the mathematical entropy corresponds to maximising the disorder of the electrons with respect
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Figure 1. (a) Normalised direction of travel distribution of electrons in copper with e €
[5keV, 10 keV] obtained from a Monte Carlo simulation in DTSA-II [13,23]. (b) and (¢) Angular
distribution at two different depths in the Monte Carlo simulation from subfigure (a) compared
to the Mj reconstruction s, and Ma reconstruction ¥y, .

to the direction of travel for a given set of moments. This assumption of maximal disorder is not
accurate over the whole range of energies. Nevertheless, the angular distribution of electrons
is not rich in detail, having only one dominant direction of travel in each cell. We will show
in section 4 that the Mj;-model is able to reproduce the electron transport in the context of
EPMA well. Figures 1(b) and 1(c) show the direction of travel distribution at two different
space points, one close to the surface and another at deeper into the sample, as well as the
My and Ms distribution reconstructed from the moments. As expected the minimum entropy
reconstruction is better far inside the material than close to the surface. Figures 1(b) and 1(c)
furthermore illustrate the improvement of the reconstruction when increasing the number of
considered moments.

8.8. Mi-model
For the case of taking only the first two moments the minimum entropy closure problem for the
second order moment ¥(® can be solved analytically and we find

o o f1=xUal),  3x(la)=1 o _ «
wME_w( > T 2 Tl Pl (16)

where y is the Eddington factor which depends implicitly on the Euclidean norm of the
anisotropy parameter o = ¢ /4(0) [19-21,24]. The Mj-model now follows from closing the
moment eqs. (10) and (11) with the minimum entropy closure relation for 1)(?) given by eq. (16).
We define a variable vector

Uz, e) = (O (2, e),9(z,¢)) (17)
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and write the M7 equations in a compact form to point out the similarity to classical conservation
laws with relaxation [25]

0

—a(S(l’, eU(x,€))+ V- F(U(z,€)) =T(x,e)U(x,¢€) (18)

with

Pw)= ﬁaUUlj, ) TE9=(0 —reor)

Compared to classical evolution equations, 0/0.(SU) takes the part of a time derivative
describing an evolution of U in energy space from high to low energies. The highest possible
energy is the beam energy €, hence the initial condition is given by U(z,€,), which we
approximate by Gaussian distributions centred at the point where the beam electrons enter the
material. For the solution of such initial value problems, a variety of well-established numerical
methods is available [25]. We decided to employ the discontinuous Galerkin (DG) method for
the discretisation in space with a Runge-Kutta (RK) time stepping scheme for the integration in
time [26-28]. The results presented in the following section were obtained using a second order
discretisation.

At this point, our focus is to study the accuracy of the Mi-model and its numerical solutions.
We therefore developed our current Mj-solver with respect to flexibility using the finite element
library deal.IT [29,30]. Yet the long-term objective is to develop a Mj-solver tailored to EPMA
application to efficiently solve the inverse problem.

4. Results and discussion

Although the M;-model is designed for complex geometries, we first assess simple samples to
study its validity, as more data is available for these geometries. We take results obtained from
Monte Carlo (MC) simulations as reference solutions since this method can model the electron
transport most accurately. The reference solutions presented in this section were generated
using the DTSA-II MC software [23], which also implies the CSD approximation. A more
precise physical model is implemented in the Monte Carlo code PENELOPE [14], which we
plan to use for the generation of additional reference solutions in the future. In order for the
comparison between the M7- and MC-model to be as fair as possible, we use the same data for
material parameters (elastic scattering cross-section, shell ionisation cross-section, etc.) in both
models and therefore favour data available for both models over more elaborated data available
only in DTSA-II. Table 1 gives an overview of the material models used in the simulation results
presented in this section. The setups of the three test cases we will look at in this section are
shown in table 2. In all test cases, we approximate the initial electron distribution as a Gaussian
distribution with a standard deviation of 10 nm, corresponding to a full width at half maximum
(FWHM) of approximately 23.5 nm.

The test cases are two dimensional in the sense that the systems are homogeneous in the
third direction. Note that the electrons still move in three dimensions in space but their phase
space distribution function is constant along one spatial direction.

At this point we study only the most essential processes, namely the electron-transport and
the related generation of X-rays in the material, and leave modelling of X-ray transport and
associated fluorescence effects to the future.
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Table 1. Material models used in M; and MC simulations.

H Mi-model \ MC-model
Elastic scattering cross-section Screened Rutherford [31] | Screened Rutherford [31]
(McKinley-Feshbach (NIST Mott [32])
formula [33])
Stopping power Bethe formula [31] Bethe formula [31]
Mean ionisation potential Sternheimer64 [34] Sternheimer64 [34]
Absolute ionisation cross-section || Casnati82 [35] Casnati82 [35]
X-Ray transition probability ENDLIB-97 [36] ENDLIB-97 [36]

Table 2. Setup of three test cases (homogeneous, thin film and interface).

Setup of test case 1 (homogeneous material) ‘

S S S S
Beam energy ep: 12, 20 keV ff///é?
Beam diameter Dg: 10 nm Bl
Material (density) Fl;:  Cu (8.96 - 103 kgm™) ???????

Setup of test case 2 (thin film) o
Beam energy ep: 10 keV |
Beam diameter Dg: 10 nm VEL' /S S S [L
Film thickness L: 100 nm NANNNNNN
Material (density) Ely:  Cr (7.2 -10% kgm™) ii\f*}b\ii

Al (2.7 - 103 kgm™®) NNNNNN
Material (Density) Elp:  Ni (8.9 - 10% kgm™)

Setup of Test Case 3 (Interface) €
Beam energy eg: 10 keV /S ANNNN
Beam diameter Dg: 10 nm /E/l// EJ\EZ\E
Material (density) El;:  Cr (7.2 -10% kgm™) ///1/’ <\<§
Material (density) Elp: Ni (8.9 - 103 kgm™) /S ANNNN

4.1. Homogeneous material

In order to start with the simplest material structure possible, we consider a homogeneous bulk
of copper excited by a narrow Gaussian electron beam for different energies. As most methods
for computing the k-ratios of homogeneous samples are based on the calculation of the depth
distribution of radiation (¢(pz) curve), we use it as basis for the validation of the M;j-model
here. Figure 2 shows the depth distributions of Cu-K« radiation computed from the M;- and
MC-model.

In addition to the M; and MC solutions, we added the depth distributions obtained with two
common analytical models, the XPP [9] and the PAP [4] model. For a better comparability,
the M7 and MC results are scaled such that the maximum value of the depth distribution is
equal to the maximum value of the PAP depth distribution. Note that the scaling corresponds to
changing the number of simulated electrons and thereby does not have an influence on normalised
quantities like k-ratios.

For all beam energies, the depth distributions obtained from the M;j-model match the MC
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Figure 2. Normalised depth distribution of Cu-Ka radiation (¢(pz)) in copper at different beam
energies. Comparison of the M; moment model to Monte Carlo and two common analytical
models (XPP and PAP).

results very well. The results for XPP and PAP model approach the MC results for increasing
beam energy but nevertheless clearly deviate from the MC results. The deviation is most
evident near the sample surface for the lower beam energy of 12 keV where the graphs deviate
also qualitatively, which reflects the limited applicability of the PAP and XPP model to cases
in which the beam energy is close to the minimal excitation energy of the shell of interest [4].

4.2. Thin film

A common sample structure of interest are multi-layered samples. This motivates the material
structure of our second test case, a thin film on a substrate. Both the substrate and the thin film
consist of only one chemical element as visualised in the schematic drawing shown in Table 2. We
look at two material combinations with nickel as substrate in both cases. We chose the material
of the thin film to be chromium and aluminium in order to have, respectively, a moderate and a
strong difference of the atomic number between both materials. These correspond respectively
to the cases of a moderate and a strong change in material properties at the interface.

Analogous to the homogeneous test case, we validate the Mj-model based on the depth
distributions of K a-radiation, which are plotted in figs. 3(a) and 3(b). We computed the depth
distribution of Ka-radiation neglecting the fact that each element is present only in either the
thin film or the substrate. This is not physically correct but provides more information for
comparison and can easily be corrected by ignoring the first or second part of the graph. As for
the homogeneous test case, we scaled the M; and MC results such that the maximum Cr/Al
Ka-radiation equals the respective maximum computed using the PAP model. The dashed
vertical lines in figs. 3(a) and 3(b) indicate the position of the interface between the thin film
and the substrate.

For the moderate case of chromium on nickel (fig. 3(a)), our observations are similar to the
homogeneous case. We observe very good agreement between the M; and the MC results whereas
the XPP and PAP results deviate significantly from the MC solution. The same applies to the
depth distributions of Ni- K« radiation for the case of a thin aluminium film (fig. 3(b)). The M;
results for the depth distribution of aluminium K a-radiation start to deviate slightly from the
MC results at a mass depth of around 0.1 mg/ cm?. Comparing the deviation with the deviations
between the results for different elastic scattering cross-sections (screened Rutherford and Mott)
we can see that the deviation is in the range of uncertainties due to material parameters. Even
though the XPP and PAP results for the depth distribution of Al-K« radiation are relatively
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Figure 3. Depth distribution of Ka-radiation for two one layer thin film systems ((a) 100 nm
chromium on nickel; (b) 100 nm aluminium on nickel) at 10 keV. Comparison of the /; moment
model to Monte Carlo a two common analytical models (XPP and PAP).

good, the M results are clearly better.

4.8. Interface setup

The third test case is also a binary structure. Two one-element materials separated vertically,
with the interface aligned to the electron beam as visualised below. As the chemical composition
of this sample is not a function of depth, classical analytical models like XPP and PAP are not
applicable. We will, therefore, compare the M; solution with MC results only.

We will value the M7 solution based on the spatial distribution of the electron number
density n. A reference solution n,.y was calculated from a weighted histogram for the position
and energy of electrons in a MC simulation. We used 100 bins to discretise the energy interval
[0,ep] and a 100x100 equidistant grid to discretise the sample in space. A comparison of the
electron number densities at different energies is presented in fig. 4. Comparing the M; with
the Monte Carlo solution, we see that the Mi-model is able to reproduce the dynamics of the
electrons very well. For both models, the electrons penetrate the chromium region (xz < 0)
about the same amount further then the nickel region (z > 0). The area occupied by electrons
and the location of the maximum electron density for the different energies match remarkably
well too. Furthermore, the Mi-model reproduces the sharp increase in density at the bottom.
The main difference between both solutions is the earlier smoothing out of the electron density
distribution towards the centre of the occupied region in the MC solution. This effect has to be
investigated further.

Also noticeable in fig. 4 is the stochastic character of the Monte Carlo solution, resulting in
a noisy solution even for a fairly high number of 200,000 simulated electrons. The distortion
of the solution by the stochastic noise increases with decreasing energy (fig. 4), as the records
in the histogram are distributed over more bins, which increases the uncertainty per bin. This
effect makes the calculation of gradients, necessary for solving the inverse problem, difficult. As
a deterministic model, the M; solution always gives smooth solutions, which are well suited for
computing gradients.

5. Conclusion

Taking Monte Carlo as a reference, the results for the three test cases presented in the previous
section show that the Mi-model is able to reproduce the electron dynamics in EPMA applications
very well. Compared to classical analytical models like XPP and PAP, the M;i-model is more

10
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€ = 9.25keV

Figure 4. Spatial electron number density distribution in a binary structure (chromium (left)
and nickel (right)) at different energies for a beam energy of eg = 10keV. Comparison of the
M, solution nyz, (bottom) to Monte Carlo n,.f (top).

accurate and far more flexible. Nevertheless, the Mi-model is still an approximation to the
BCSD equation and hence it is natural that M; solutions usually deviate slightly from MC
solutions. Further investigations are necessary to better understand the cause of the deviations,
the impact of such deviations on the accuracy of k-ratios and possible improvement through
higher order moment models.

In summary, we are convinced that a minimum entropy moment model of the BCSD together
with a sophisticated method for computing gradients of PDE constrained optimization problems
(i.e., adjoint state method) is an efficient, flexible and accurate concept for solving the inverse
problem of reconstructing the chemical material composition in EPMA.
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