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Abstract. Laminar flame speed ( ) of CH4 was determined at atmospheric pressure and initial
gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure
the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to
simulate . The measurements were compared with available literature results. The data
determined with the heat flux method agree with some previous burner measurements and
disagree with the data from some vessel closed method and counterflow method. The GRI 3.0
mechanism was able to reproduce the present experiments. Laminar flame speed was
determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based
on experimental data and calculations was obtained dependence on pressure and
temperature. The resulting of dependence recommended use during the numerical simulation of
methane combustion.

1. Introduction
Development of new gas-turbine engines for power plants is very challenging task. The combustion
chamber is one of the main components of any gas turbine engine. Design and working of the
combustion chamber process of determining the essential characteristics of the engine. Currently in the
design of the combustion chambers using Computational Fluid Dynamics (CFD) methods. CFD can
quickly and accurately determine the basic characteristics of the designed (or modified) combustion
chamber, such as the complete loss of pressure, air distribution laws, as well as emission
characteristics and others. However, a qualitative of prediction of pollutant formation processes is
impossible without the use of detailed chemical kinetics, as well as a qualitative description of
combustion processes. One of the main parameters influencing the physics of combustion of fuel-air
mixture is [2]:

, (1)
where – the initial temperature of the unburned mixture,

– the initial pressure of the unburned mixture

where φ - the equivalence ratio
C1,C2 and C3 - constants depending on the type of fuel
The exponents α and β are calculated as:

,
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.
As can be seen from the equation (1) SL depends on the coefficient α and β. The CFD software

mainly uses one of two equations to determine . One of them is (1) and another one is from [3]:
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where Y F.u – the mass fraction of the fuel in the fuel-air mixture,
T0– the temperature of the inner layer of the laminar flame,
Тb – adiabatic equilibrium temperature of combustion products,
B, E, F, G, m, n – coefficients (presented in [3]).
As shown below, the calculation of the results of these two equations do not accurately

superimposed on the experimental results, taken from open sources. Therefore, as proposed a process
for preparing solutions according to the refined SL = f (φ, , ).

Aims of this paper are to investigate different data on methane+air laminar flame speed and to
determine the dependence of on pressure and temperature.

2. Details of experiment
The measurements of CH4 and air mixtures flame speed were performed by experimental facility to
determine the speed of the flame by the heat flux method. The heat flux method allows stabilization of
flat adiabatic flames on a perforated burner due to possibility of balancing heat transfer between the
flame and the burner plate. The edge of the burner plate is kept preheated to 368 K by a water circuit
in the burner head, controlled by a water bath. The temperature difference between the burner plate
and the unburned mixture forces negative heat flux from the plate to the gas, which is balanced by the
positive heat flux from the flame back to the plate. The unburned gas temperature ( ) was set in range
from 298 to 358 K. The unburned gas pressure ( ) was set to values of 1 atm. The range of
equivalence ratios was limited to φ = 0.6-1.6. The experimental facility shown in the figure 1.

a) b)

Figure 1 - Test rig to measure SL: (a) general view, (b) burner device.

3. Simulation
Simulation of adiabatic premixed one-dimensional flames was performed using Chemkin 4 code [4].
Grid-independent solutions were obtained for high-temperature mechanism GRI 3.0, which contains
325 reactions, 56 chemical species and were made by M. Frenklach et al [1]. The calculation was
performed under the following initial conditions: , , φ=0.6…1.6.

4. Approximation equation
Based on the simulation results several three-dimensional graphics were built. Two of them you can
see in the figure 2: SL = f (φ, ) and SL = f (φ, ).
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a) b)

Figure 2 – Calculated SL dependence on φ and Pu with Tu =800 K (a) and dependence on φ and
with (b)

The data obtained from the calculation can be described by the equation presented below:
2 25.1 10.8 7.6 0.4715 1.1 0.9663 2(145 850 1265 325)( ) ( )

800 101325
T pu uSL

              (3)

It should be noted that the use of this dependence is limited by the equivalence ratio range as
φ=0,33…1,9.

5. Results and discussion

5.1 Temperature dependence
Figures 3 - 4 show values of SL experimentally obtained, calculated by (1), (2), (3) and the mechanism
GRI 3.0 in comparison with data of other authors [5-36].

a) b)
Figure 3 – Laminar flame speed (a) and (b)

(more details about the chart legend can be seen in Appendix).
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a) b)
Figure 4 – Laminar flame speed (a) (b)

(more details about the chart legend can be seen in Appendix).

Figures 3-4 show for this temperature range all data are in a good agreement, except equation (1)
which shows higher values for rich equivalence ratio. Equation (2) shows a good prediction for all
provided initial conditions. The experimental data of this work are in a good agreement with data of
other authors [5-35] and with the data obtained in the works [1-4]. This indicates that used method is
valid. Based on these graphs, it is clear that the kinetic mechanisms of chemical reactions GRI 3.0 is in
good agreement with experiments and is suitable for further use in order to obtain the calculated
values. This is necessary due to the lack of available experimental data for large pressures and
temperatures. Equation (3) shows a bit of lower values according to results of GRI 3.0 simulations.

5.2 Pressure dependence
Figures 5 - 6 show values of SL calculated by the equations (1), (2), (3) and the mechanism GRI 3.0
for initially temperature equal to 500 and 700K, and pressure equal to 10 and 20 bar.

a) b)

Figure 5 - Laminar flame speed at 10 bar, (a) 300 K and (b) 500 K.

a) b)

Figure 6 - Laminar flame speed at 20 bar, (a) 300 K and (b) 500 K.

As the presented graphs show, equation (2) significantly overestimates the value of SL at high
values of in comparison with the experimental data. In turn, the calculation from equation (1)
shows slightly understated SL values with respect to the experimental data. Calculation by formula (3)
allows obtaining SL values, which agree satisfactorily with both experimental and kinetic calculations
of the GRI 3.0 mechanism.
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Figure 7 presents a comparison of theα andβ values obtained in this paper with the data of other
authors [37-39]. As can be seen from the presented graphs, the value of the degrees used in equation (2)
is linear and does not correspond to the experimental data. Whereas the proposed values of α and β

have extrema in the range 1 <φ <1.2, which corresponds to the experimental data and the calculations
of other authors.

a) b)
Figure 7 – Power exponents α (a) and β (b) as a function of φ

6. Conclusions
During this work SL was determined experimentally at atmospheric pressure and initial gas
temperature in the range 298-358 K by heat flux method. SL was also was determined by simulation
with GRI 3.0 kinetic mechanism for initial temperature up to 800 K and pressure up to 20 bar. Based
on results of simulations was developed equation (3). The presented experimental data and calculation
using equation (3) are in good agreement with results of other authors and calculations using the
kinetic mechanism GRI 3.0. The equation (3) can be used for modeling in the software packages.
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Appendix
Reference Method Symbol Reference Method Symbol

5 Сounterflow 20 Сounterflow
6 Closed vessel 21 Сounterflow
5 Сounterflow 22 Bunsen flame
7 Flat flame, heat flux 23 Closed vessel
8 Closed vessel 24 Closed vessel
5 Сounterflow 25 Closed vessel
9 Closed vessel 26 Closed vessel
10 Closed vessel 27 Closed vessel
11 Closed vessel 28 -
12 Flat flame, heat flux 29 -
13 Closed vessel 30 -
14 Closed vessel 31 -
15 Bunsen flame 32 -
16 Flat flame, heat flux 33 -
17 Flat flame, heat flux 34 -
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18 Closed vessel 35 -
19 Closed vessel
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