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Abstract. With motivation by holography, in this paper we attempt to survey whether 

holographic Van der Waals phase transition can be observed in the Anti-de Sitter spacetime 

with global monopole. We offer a possibility to proceed with a numerical calculation in order 

to discussion on phase transition. Furthermore, we verify numerically the Maxwell's equal area 

construction. In addition, the effect of global monopole on phase transition is also presented. 

1. Introduction 

Due to a black hole possessing thermodynamic properties, it is natural to ask whether it can undergo a 

Van der Waals phase transition in the same manner as a ordinary liquid-gas thermodynamic system. It 

was found that the charged AdS black hole in the entropy-temperature plane presented an analogous 

Van der Waals phase transition in the canonical ensemble[1]. Recently, in the P-V plane, the Van der 

Waals phase transition has been explored in various of AdS backgrounds[2-7]. Very recently, 

entanglement entropy and two point correlation function have been used to investigate Van der Waals 

phase transition[8-16]. All the results showed that there existed a Van de Waals-like phase transition 

in these gravity backgrounds. 

In the framework of holography, it is interesting to detect the phase structure of a Reissner-

Nordström black hole with global monopole in AdS background. In the present work, we attempt to 

study whether the Van der Waals-like phase transition can be observed, and discuss on global 

monopole's effect on phase transition. 

2. Holography Van Der Waals Phase Transition 

First, Let us review a black hole with global monopole in AdS background. In 2016, Ahmed A K, 

Camci U and Jamil M presented a Reissner-Nordström anti-de-Sitter black hole with global monopole 

charge. The metric reads 
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where M is mass parameter, Q stands for the black hole's charge, and 1 2( 3)L    is the AdS 

radius. The temperature of the black hole with global monopole is 
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where Hr  is the event horizon which is determined by ( ) 0Hf r   ( Hr is the largest root). With the 

relationship F M TS  and
2

HS r  yields 

                                                       

2
2 2 2

2
3 1

4

H
H

H

r
Q r

L
F

r


 

   
 

                                                          (4) 

Now, we begin to explore the global monopole black hole's critical behavior and phase transition in 

the temperature--entropy plane. From Eq. (3) and the expression of entropy, we can obtain the 

function ( , , )T S Q    by eliminating Hr  
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Note that the phase structure of a global monopole black hole is not only related to electric charge Q, 

but also the global monopole parameter . Based on the function ( , , )T S Q  above, the phase 

structure of the global monopole black hole can be detected. To do so, we need to find out the critical 

value of phase transition according to the following relation  
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Connecting the Eqs. (5) and (6), we get the critical charge CrQ , critical entropy CrS and critical 

temperature CrT  
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The heat capacity is 

                                                            Q
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According to the expressions (3)-(5), we may plot the related transition curves as follows. 

From Figure 1 and Figure 2, we know that the number of the global monopole black hole solution 

is related to the value of charged Q . Each curve corresponds to a different electric charge. Figs. 1 has 
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implication for phase transition. Here, in a temperature and entropy plane, we present the global 

monopole black hole’s phase structure in a fixed charged ensemble. Evidently, a Van der Waals-like 

phase transition is clearly observed in theT S plane in Figure 2. In case of CrQ Q , the temperature 

is monotonically larger with the increase of entropy, and corresponding system is thermodynamically 

stable since the heat capacity is positive. When Q  reaches the critical value CrQ Q , an inflection 

point arises and the heat capacity diverges, namely, there exists a second order phase transition at this 

point. when CrQ Q , besides two stable branches with positive heat capacity, there is also an unstable 

branch with negative heat capacity,  which corresponds to a first order phase transition. According to 

Maxwell’s equal-area law, this unstable part need to be replaced with an isotherm 
SCT T . The 

subcritical temperature 
SCT can be got from the plot of the free energy with respect to the temperature 

in Figure  3. 

 

 
 

Figure 1. Plot of the temperature T versus the horizon Hr for 0.14 CrQ Q   (top), CrQ Q  

(intermediate), and CrQ Q  (bottom). The parameters are taken as 1L  and 0.1  . 
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Figure 2. Plot of the temperature T versus the entropy S for 0.14 CrQ Q   (top), CrQ Q  

(intermediate), and 0.16 CrQ Q   (bottom). Above black dash line corresponds to the first order 

phase transition temperature 0.2718SCT  . Below purple dash line corresponds to the second order 

phase transition temperature 0.2612CrT    the parameters are taken as 1L  and 0.1  . 

 

The plot in Figure 3 shows that the relationship between the temperature and free energy for 

different Q . In case of CrQ Q , a classic swallowtail structure is always observed, which is 

responsible for the first order phase transition in Figure 2. We indicate the transition 

temperature
SCT by a red dashed line in Figure 3, which is the horizontal coordinate of the junction. In 

Figure 4, we find that an inflection point emerges, and it just corresponds to the inflection point of the 

second order phase transition as is presented in the middle curve in Fig 2. Furthermore, the 

longitudinal coordinate of an inflection point just coincides with the critical temperature CrT  in Eq. (9). 

 

 

Figure 3.   Plot of the temperature T versus the energy F for 0.14 CrQ Q  . The red dash curve 

corresponds to the first order phase transition temperature 0.2718SCT   The parameters are taken 

as 1L  and 0.1  .  
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Figure 4.   Plot of the temperature T versus the energy F for CrQ Q . The red dash curve corresponds 

to the second order phase transition temperature 0.2612CrT   The parameters are taken 

as 1L  and 0.1  .  

 

Then, we discuss on how the global monopole   effects the phase transition. For different the 

global monopole parameter , the related curves give a similar behavior not only in the T S plane 

but also in the F T  plane. Here, we take 0.3   and 0.1   as for example, and compare their 

phase transitions in theT S plane. The related transition curves are plotted as follows 

 

 

Figure 5.  Plot of the temperature T versus the entropy S in case of CrQ Q for 0.3   (top) and 

0.1   (bottom). The purple dash lines correspond to the second order phase transition temperature 

for different . The parameters are taken as 1L  . 
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Figure 6.   Plot of the temperature T versus the entropy S in case of CrQ Q for 0.3   (top) and 

0.1   (bottom). The black dash lines correspond to the first order phase transition temperature for 

different . The parameters are taken as 1L  .  

 

It is obvious that we can observe the effect of global monopole   on the phase transition from 

Figure 5 and Figure 6. The critical temperature CrT  increases with global monopole  increasing. 

Moreover, as global monopole   increases, the unstable scale become smaller.  

Next, In order to further verify the Van der Waals like phase transition, we turn to check Maxwell 

equal area law for the first order phase transition and the corresponding statement can be written as 

                                                ( , , ) ( )
a

i

S
SC

a i
S

A T S Q dS T S S A                                              (11) 

where ( , , )T S Q   is defined in Eq. (5), iS  and aS are the smallest and largest roots of the 

equation ( , , ) SCT S Q T  . Now, we take 0.1   as an example. We can get 0.2983A   at right 

side of Eq. (11), and obtain 0.2984A  by integrating left side of Eq. (11). Namely, A  equals to A  

in our numeric accuracy. So the Maxwell’s equal area construction holds in the T S plane. 

For the global monopole black hole’s second order phase transition, we confirm it by calculating 

the critical exponent of the heat capacity. Near the critical point, setting CrS S    and expanding 

the Hawking temperature in small , we can obtain 
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Using Eqs. (9) and (12), we find 
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Thus, from Eqs. (10) and (13), we have  
2 3

Q CrC T T


 , namely the critical exponent of the second 

order phase is −2/3, which is consistent with the mean field theory. 

3. Conclusion 

To conclude, in this paper, employing the relation between the temperature and entropy, we plot 

isocharges of the global monopole in a fixed charge ensemble, and discuss on the effect of the global 

monopole on Van der Waals phase transition in theT S plane. To further verify the phase transition, 

the equal area law is checked in this plane, and the critical exponent for the second order phase 

transition is also calculated. The result shows that, for the Reissner-Nordström anti-de-Sitter black 

hole with global monopole, the Van der Waals phase transition can also be presented in 

theT S plane. 
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