
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

4th International Conference on Operational Research (InteriOR) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 300 (2018) 012081 doi:10.1088/1757-899X/300/1/012081

Primitive graphs with small exponent and small

scrambling index

Ita Y Surbakti, Saib Suwilo∗ Ericha A Butar-butar, and Helda
Oktaviani
Department of Mathematics, Universitas Sumatera Utara, Medan 20155, Indonesia

E-mail: ∗saib@usu.ac.id

Abstract. A connected graph G is primitive provide there is a positive integer k such that for
each pair of vertices u and v there is a uv-walk of length k. The smallest of such positive integer
k is the exponent of G and is denoted by exp(G). The scrambling index of a primitive graph G,
denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v there
is a vertex w such that there is a uw-walk and a vw-walk of length k. By an n-chainring CR(n)
we mean a graph obtained from an n-cycle by replacing each edge of the n-cycle by a triangle. By
a (q, p)-dory, D(q, p), we mean a graph with vertex set V (D(q, p)) = V (Pq ×Pp)∪{w1, w2} and
edge set E(D(q, p)) = E(Pq×Pp)∪{w1−(ui, v1) : i = 1, 2, . . . , q}∪{w2−(ui, vp) : i = 1, 2, . . . , q},
where Pn is a path on n vertices. We discus the exponent and scrambling index of an n-
chainring and (q, p)-dory. We present formulae for exponent and scrambling index in terms of
their diameter.

1. Introduction
Let G be a simple graph. We follow graph terminologies from [1,2]. Let u and v be two vertices
in a graph G. A walk connecting u and v is denoted by Wuv or uv-walk. A uv-path is a uv-walk
without repeated vertices except possibly u = v. A cycle is a closed path. The length of a walk
Wuv is denoted by `(Wuv). By a triangle we mean a cycle of length three. A walk is even or
odd if it is of even or odd length respectively. For a connected graph G the distance d(u, v) of
vertices u and v in G is defined to be the length of a shortest uv-path in G. The diameter of a
connected graph G, denoted by diam(G), is defined to be

diam(G) = max
u,v

{d(u, v)}.

A connected graph G is said to be primitive if there is a positive integer k such that for each
pair of vertices u and v in G there is a uv-walk of length k. The exponent of a primitive graph
G, denoted by exp(G), is the smallest of such positive integer k. The scrambling index of a
primitive graph G is the smallest positive integer k such that for each pair of vertices u and v
there is a uv-walk of length 2k [3–5]. It is known that a connected graph is primitive if and only
if it contains an odd cycle [2]. From definition we have exp(G) ≥ diam(G). Notice also that if
diam(G) of G is even then by definition k(G) ≥ diam(G). If the diam(G) is odd, then there is a
pair of vertices u and v such that the shortest even uv-walk is of length diam(G) + 1. Hence if
diam(G) is odd, we have k(G) ≥ (diam(G) + 1)/2. Therefore, for a primitive graph G we find
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that k(G) ≥
⌈

diam(G)
2

⌉
. Therefore, for a primitive graph G with the smallest cycle of odd length

r ≥ 3

diam(G) ≤ exp(G) and
⌈

diam(G)
2

⌉
≤ k(G). (1)

In this paper we discuss two-classes of primitive graph with small exponent and small
scrambling, that is, primitive graphs G with exp(G) = diam(G) and k(G) =

⌈
diam(G)

2

⌉
. For

positif integer n ≥ 3, an n-chainring is a graph obtained form an n-cycle by replacing each
edge of the n-cycle by a triangle. More precisely, an n-chainring CR(n) is a primitive graph
on 2n vertices consisting of the the n-cycle v2 − v4 − · · · − v2n−2 − v2n − v2 and the 2n-cycle
v1 − v2 − v3 − v4 − · · · − v2n−1 − v2n − v1. The graph of CR(8) is given in Figure 1.

Figure 1. The Graph of CR(8).

For positive integers p and q, let Pq be a path on q vertices {u1, u2, . . . , uq} and Pp be a
path on p vertices {v1, v2, . . . , vp}. By a (q, p)-dory, D(q, p), we mean a graph with vertex set
V (D(q, p)) = V (Pq ×Pp)∪ {w1, w2} and edge set E(D(q, p)) = E(Pq ×Pp)∪ {w1 − (ui, v1) : i =
1, 2, . . . , q} ∪ {w2 − (ui, vp) : i = 1, 2, . . . , q}.

In Section 2, we discuss properties of uv-walk especially uv-walk in an n-chainring. In Section
3, we discuss the exponent and scrambling index of n-chainring. In Section 4, we discuss the
exponent and scrambling index of (q, p)-dory.

2. Properties of Walks
We discuss some properties of uv-walk necessary for our discussion.

Proposition 1. Let G be a graph and let Wuv be a uv-walk of length `(Wuv) in G. If k is a
positive integer such that k ≥ `(Wuv) and k ≡ `(Wuv) mod 2, then there is a uv-walk of length
k in G.

Proof. Let
Wuv : u = v0 − v1 − v2 − · · · − vi − vi+1 − · · · − vm = v

be a uv-walk of length `(Wuv). Since k ≥ `(Wuv) and k ≡ `(Wuv) mod 2, there is a nonnegative
integer t such that k − `(Wuv) = 2t. Then the walk that starts at u = v0, moves to vi+1 along
the walk u = v0 − v1 − v2 − · · · − vi − vi+1 and then moves t times around the closed walk
vi+1 − vi − vi+1 and finally moves to v along the walk vi+1 − · · · − vm = v is a uv-walk of length
k = `(Wuv) + 2t.
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Proposition 2. Let n be integer such that n ≥ 4. Then for any pair of vertices u and v in
CR(n) there is a uv-path of length d(u, v) + 1.

Proof. Let u and v be any two vertices in CR(n) and let the path

Puv : u = v0 − v1 − v2 − · · · − vi − vi+1 − · · · − v` = v

be a uv-path of length d(u, v) = `. Since every edge vi − vi+1 of the path Puv lies on a triangle,
then there is a vertex vi′ such that the closed path vi − vi′ − vi+1 − vi is a triangle. This implies
the uv-path

Puv : u = v0 − v1 − v2 − · · · − vi − vi′ − vi+1 − · · · − v` = v

is a uv-path of length d(u, v) + 1.

3. Exponent and scrambling index of n-chainring
We discuss the exponent and scrambling index of CR(n). We first present formulae for exponent
and scrambling index in term of the diameter of CR(n) and then present formulae that depends
on n.

Theorem 3. Let n be a positive integer with n ≥ 4. Then exp(CR(n)) = diam(CR(n)).

Proof. From (1) we have exp(CR(n)) ≥ diam(CR(n)). It remains to show that exp(CR(n)) ≤
diam(CR(n)). For each pair of vertices u and v we show that there exists a uv-walk of length
diam(CR(n)). Notice that for each pair of vertices u and v there is a uv-path Puv of length
d(u, v). If d(u, v) = diam(CR(n)) mod 2, then by Proposition 1 the path Puv can be extended
to a walk Wuv of length diam(CR(n)). If d(u, v) 6≡ diam(CR(n)) mod 2, then by Proposition 2
there is a path P ′

uv of length `(P ′
uv) = d(u, v) + 1. We now have `(P ′

uv) ≡ diam(CR(n)).
Hence Proposition 1 guarantees that the path P ′

uv can be extended to a walk Wuv of length
diam(CR(n)).

Corollary 4. Let n be a positive integer with n ≥ 4. Then

exp(CR(n)) =
{

(n + 1)/2, if n is odd
(n + 2)/2, if n is even.

Proof. If n is odd, the diam(G) = d(v1, vn) = (n+1)/2. If n is even, the diam(G) = d(v1, vn+1) =
(n + 2)/2.

Theorem 5. Let n be a positive integer such that n ≥ 3. Then k(CR(n)) =
⌈

diam(CR(n))
2

⌉
.

Proof. From (1) we have k(CR(n)) ≥
⌈

diam(CR(n))
2

⌉
. It remains to show that k(CR(n)) ≤⌈

diam(CR(n))
2

⌉
.

If the diam(CR(n)) is even, then by Proposition 1 for each pair of vertices u and v there
is a uv-walk of length diam(CR(n)). Thus we conclude that k(CR(n)) ≤ diam(CR(n))/2.
If the diam(CR(n)) is odd, then the shortest even walk connecting u0 and v0 is of length
diam(CR(n)) + 1. Notice that for every pair of vertices u and v, d(u, v) ≤ diam(CR(n)).
Proposition 1 and Proposition 2 imply that for each pair of vertices u and v there is an even
uv-walk of length diam(CR(n)) + 1. Hence k(CR(n)) ≤ diam(CR(n))+1

2 . We now conclude that

k(CR(n)) ≤
⌈

diam(CR(n))
2

⌉
.

We now conclude that k(CR(n)) =
⌈

diam(CR(n))
2

⌉
.
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Corollary 6. For positive integer n ≥ 3, k(CR(n)) = bn/4c+ 1.

Proof. Suppose n is even. Then the diam(CR(n)) = (n + 2)/2 and is obtained by the v1vn+1-
path v1 − v2 − v4 − · · · − vn − vn+1. If n ≡ 0 mod 4, then diam(CR(n)) = (4m + 2)/2 for some
positive integer m. By Theorem 5 we have

k(CR(n)) =
⌈

diam(CR(n))
2

⌉
=

⌈
4m + 2

4

⌉
= dm + 2/4e

= m + 1 =
n

4
+ 1. (2)

If n ≡ 2 mod 4, then diam(CR(n)) = (4m + 4)/2 for some positive integer m. By Theorem 5
we have

k(CR(n)) =
⌈

diam(CR(n))
2

⌉
=

⌈
4m + 4

4

⌉
= dm + 1e

= m + 1 =
n− 2

4
+ 1. (3)

Suppose now that n is odd. Then the diam(CR(n)) = (n + 1)/2 and is obtained by the
v1vn-path v1 − v2 − v4 − · · · − vn−1 − vn. If n ≡ 1 mod 4, then diam(CR(n)) = (4m + 2)/2 for
some positive integer m. By Theorem 5 we have

k(CR(n)) =
⌈

diam(CR(n))
2

⌉
=

⌈
4m + 2

4

⌉
= dm + 2/4e

= m + 1 =
n− 1

4
+ 1. (4)

If n ≡ 3 mod 4, then diam(CR(n)) = (4m + 4)/2 for some positive integer m. By Theorem 5
we have

k(CR(n)) =
⌈

diam(CR(n))
2

⌉
=

⌈
4m + 4

4

⌉
= dm + 1e

= m + 1 =
n− 3

4
+ 1. (5)

From (2), (3), (4) and (5) we have k(CR(n)) = bn/4c+ 1.

4. Exponent and scrambling index of (q, p)-dory
Let Pq be a path on q vertices {u1, u2, . . . , uq} and Pp be a path on p vertices {v1, v2, . . . , vp}. By
a (q, p)-dory, D(q, p), we mean a graph with vertex set V (D(q, p)) = V (Pq ×Pp)∪ {w1, w2} and
edge set E(D(q, p)) = E(Pq×Pp)∪{w1−(ui, v1) : i = 1, 2, . . . , q}∪{w2−(ui, vp) : i = 1, 2, . . . , q}.
Since D(q, p) is connected and contains triangles, D(q, p) is primitive. We also note that if p ≥ q,
then diam(D(q, p)) = d(w1, w2) = p + 1.

Theorem 7. Let p and q be positive integers such that p ≥ q. Then exp(D(q, p)) = p + 1.

Proof. We note from (1) that exp(D(q, p)) ≥ diam(D(q, p)) = p + 1. It remains to show that
exp(D(q, p)) ≤ p + 1. We show that for each pair of vertices x0 and y0 in D(q, p)) there is a
walk connecting x0 and y0 of length p + 1.

If d(x0, y0) ≡ p + 1 mod 2, then by Proposition 1 there is a x0, y0-walk of length p + 1. It
remains to consider the case where d(x0, y0) 6≡ p + 1 mod 2.

Let Px0,y0 be the x0, y0-path of length `(Px0,y0) = d(x0, y0). If one end vertex of Px0,y0 is w1

or w2, then there is a path Px0,y0 such that `(Px0,y0) = d(x0, y0) + 1 ≡ p + 1. We now assume
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that the end vertices of Px0,y0 are not w1 or w2. We consider three cases.

Case 1. The vertices x0 = (ui, vj) and y0 = (ui, vk) for some 1 ≤ i ≤ q and 1 ≤ j < k ≤ p.
We note that d(x0, y0) = k − j 6≡ p + 1 mod 2. We assume without loss of generality that
p − k ≥ j − 1. The walk that starts at (ui, vj) moves to (ui, v1) along the path of length
(j− 1), then moves one times around the triangle (ui, v1)−w1 − (ui−1, v1)− (ui, v1), and finally
moves to (ui, vk) along the path of length k−1 is a x0, y0-walk of length k + j +1. We note that
k+j+1 = 2(j−1)+k−j+3. Since k−j 6≡ p+1 mod 2, we have k+j+1 ≡ p+1 mod 2. Moreover
since (j−1) ≤ n−k, we have k+j+1 ≤ p+2. Since k+j+1 ≡ p+1 mod 2, then k+j+1 ≤ p+1.

Case 2. The vertices x0 = (ui, vk) and y0 = (uj , vk) for some 1 ≤ k ≤ p and 1 ≤ i < j ≤ q. We
note that d(x0, y0) = j − i 6≡ p + 1 mod 2. Assume without loss of generality that p− k > k− 1.
If (j − i) is even, then the walk that starts at (ui, vk) moves to (ui, v1) along the path of length
k − 1, then moves to (uj , v1) along the path (ui, v1)− (ui+1, v1)−w1 − (uj , v1) of length 3, and
finally moves to (uj , vk) along the path of length k − 1, is a x0, y0-path of length 2(k − 1) + 3.
Since 2(k−1)+3 6≡ j− i mod 2, we have 2(k−1)+3 ≡ p+1 mod 2. We note that n−k > k−1.
Therefore 2(k−1)+3 ≤ p+2. Since 2(k−1)+3 ≡ p+1 mod 2, we conclude that 2(k−1)+3 ≤ p+1.

If (j − i) is odd, then the walk that starts at (ui, vk) moves to (ui, v1) along the path of
length k−1, then moves to (uj , v1) along the path (ui, v1)−w1− (uj , v1) of length 2, and finally
moves to (uj , vk) along the path of length k − 1, is a x0, y0-path of length 2(k − 1) + 2. Since
2(k − 1) + 2 6≡ j − i mod 2, we have 2(k − 1) + 2 ≡ p + 1 mod 2. We note that n − k > k − 1.
Therefore 2(k − 1) + 2 ≤ p + 1.

Case 3. The vertices x0 = (ui, vj) and y0 = (ur, vs) for some 1 ≤ j < s ≤ p and 1 ≤ i < r ≤ q.
Notice that d(x0, y0) = (r − i) + (s − j) 6≡ p + 1 mod 2. Without loss of generality we assume
that j−1 ≤ p−s. If (s− j) ≡ p+1 mod 2, then the walk that starts at (ui, vj) moves to (ui, v1)
along the path of length (j − 1), then moves to (ur, v1) along the path (ui, v1) − w1 − (ur, v1),
and finally moves to (ur, us) along the path of length (j − 1) + (s− j) is a x0, y0-path of length
2(j − 1) + 2 + (s− j) ≡ p + 1 mod 2. Since j − 1 ≤ p− s, then 2(j − 1) + 2 + (s− j) ≤ p + 1.

If (s − j) 6≡ p + 1 mod 2, then the walk that starts at (ui, vj) moves to (ui, v1) along the
path of length (j − 1), then moves to (ur, v1) along the path (ui, v1)− (ui+1, v1)−w1 − (ur, v1),
and finally moves to (ur, us) along the path of length (j − 1) + (s− j) is a x0, y0-path of length
2(j − 1) + 3 + (s − j) ≡ p + 1 mod 2. Since j − 1 ≤ p − s, then 2(j − 1) + 3 + (s − j) ≤ p + 2.
Since 2(j − 1) + 3 + (s− j) ≡ p + 1 mod 2, we conclude that 2(j − 1) + 3 + (s− j) ≤ p + 1.

Therefore, for each pair of vertices x0 and y0 there is a x0, y0-walk Wx0,y0 of length
`(Wx0,y0) ≤ p + 1. Proposition 1 guarantees that for each for each pair of vertices x0 and
y0 there is a x0, y0-walk Wx0,y0 of length `(Wx0,y0) = p + 1. Hence exp(D(q, p)) ≤ p + 1.

Theorem 8. Let p and q be positive integers such that p ≥ q. Then k(D(q, p)) =
⌈

p+1
2

⌉
.

Proof. From (1) we have k(D(q, p)) ≥
⌈

diam(D(q,p))
2 = p+1

2

⌉
. It remains to show that k(D(q, p)) ≤⌈

p+1
2

⌉
.

If p+1 is even, then by Proposition 1 for each pair of vertices x0 and y0 there is a x0, y0-walk
of even length p + 1. Thus we conclude that k(D(q, p)) ≤ (p + 1)/2.

If the p + 1 is odd, then the shortest even walk connecting w1 and w2 is of length p + 2.
Notice that from Theorem 7 for every pair of vertices x0 and y0 there is a x0y0-walk of length
p + 1. This implies for each each pair of vertices x0 and y0 there is a x0y0-walk of even length
p + 2. Hence if p + 1 is odd, k(D(q, p)) ≤ (p + 2)/2.
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Therefore we now conclude that k(D(q, p)) ≤
⌈

p+1
2

⌉
. Hence we now have k(D(q, p)) =⌈

p+1
2

⌉
.
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