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Abstract. A graph is primitive if it contains a cycle of odd length. The exponent of a primitive
graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices
u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted
by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G
there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a
(n, r)-double alternate circular snake graph, denoted by DA(Cr,n), is a graph obtained from a
path u1u2 . . . un by replacing each edge of the form u2iu2i+1 by two different r-cycles. We study
the exponent and scrambling index of DA(Cr,n) and show that exp(DA(Cr,n)) = n + r− 4 and
k(DA(Cr,n)) = (n + r − 3)/2.

1. Introduction

Let G(V, E) denote a graph on n vertices. Let u and v be any vertices in G, a uv-walk Wuv

of length t connecting u and v is a sequence of vertices u = u0, u1, u2, . . . , ut = v and a
sequence of edges {u0, u1}, {u1, u2}, . . . , {ut−1, ut}, where the vertices and the edges are not
necessarily distinct. The length of the walk Wuv is denoted by �(Wuv) . A walk connecting
u and v is closed whenever u = v, and is open otherwise. A path Puv connecting u and v
is a walk Wuv with distinct vertices, except possibly u = v. A cycle is a closed path. A
walk Wuv with sequence of edges {u = u0, u1}, {u1, u2}, . . . , {ut−1, ut = v} is also denoted by
Wuv : u = u0 − u1 − u2 − · · · − ut−1 − ut = v. The distance between vertices u and v, denoted
by d(u, v), is the length of a shortest path connecting u and v.

A graph G is connected provided that for each pairs of vertices u and v in G there is a walk
connecting u and v. A connected graph G is primitive provided there is a positive integer m
such that for each pair of vertices u and v in G, there is a uv-walk of length m. The smallest of
such positive integer m is the exponent of G and is denoted by exp(G). It is well known that a
graph G is primitive if and only if G has a cycle of odd length [3].

Alkelbek and Kirkland [1, 2] introduced the notion of scrambling index of primitive graph G
for the first time in 2009. The scrambling index of a primitive graph G, denoted by k(G), is the
smallest positive integer k such that for any pair of distinct vertices u and v in G there exists
a vertex w such that there is a uv-walk of length m and a vw-walk of length m. Chen and Liu
[4] discussed the scrambling index of classes of primitive graph with the smallest cycle of length
s ≥ 3 and classes of primitive graphs with loops.
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By an r-double circular DCr we mean a connected graph consisting of two r-cycles that have
one edge in common. The edge in common of the two r-cycles is called the base of the r-double
circular or the the base of the r-cycles. Figure 1 presents a DC5 with base is the edge {u3, u4}.
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Figure 1. The graph of DC(5)

Let n be an even positive integer and r be an odd positive integer. A double alternate circular
snake graph (DA(Cr,n) is a graph obtained from a path u1, u2, . . . , un by replacing each edges
of the form {u2i, u2i+1}, 1 ≤ i ≤ n−2

2 by an r-double circular with base {u2i, u2i+1}. Figure 2
presents a DA(C5,6).
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Figure 2. The graph of DA(C5,6)

Double alternate circular snake graph, especially double alternate triangular snake graph, has
attracted many researchers [5, 6]. In this paper, we discussed the exponent and the scrambling
index of double alternate circular snake graph, DA(Cr,n). We present formulae for exponent
and scrambling index that depends on n and r.

2. Preliminaries

We discuss some properties of uv-walk in a graph and property of scrambling index.

Proposition 1. Let G be a graph and let k and � be positive integers such that � ≤ k and

k ≡ � mod 2. If there is a uv-walk of length � in G, then there is a uv-walk of length k in G.

Proof. Since k ≥ � and k ≡ � mod 2, there is a nonnegative integer t such that k = � + 2t.
Let Wuv be a uv-walk of length � in G and let {v, w} be an edge in Wuv . Then the uv-walk
obtained by moving from u to v along the walk Wuv and then moves t times around the closed
walk v − w− v is a uv-walk of length k.

Proposition 2. Let G be a primitive graph and k′ be an even positive integer. If for each pair

of vertices u and v in G there is an even uv-walk Wuv of length �(Wuv) ≤ k′, then k(G) ≤ k′/2.

Proof. For each pair of vertices u and v let Wuv be an even uv-walk of length �(Wuv) ≤ k′. Since
k′ ≡ �(Wuv) mod 2, Proposition 1 implies there is a uv-walk of length k′. Since k′ is even, then
there exists a vertex w with the property that there is a uw-walk of length k′/2 and there is a
vw-walk of length k′/2. Thus, k(G) ≤ k′/2.
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For a pair of distinct vertices u and v in G the local scrambling index of u and v is the number

ku,v(G) = min
w∈V (G)

{k : there are uw-walk and vw-walk of length k}.

We note that if the local scrambling index of u and v is ku,v(G), then by Proposition 1 for any

positive integer k′ ≥ ku,v(G) we can find a vertex w such that there is a walk u
k′

↔ w and v
k′

↔ w.
This implies

k(G) = max{ku,v(G)|u, v ∈ V (G), u �= v}.

3. Result

We discuss the exponent and scrambling index of double alternate circular snake graph DA(Cr,n)
obtained from a path u1, u2, . . .un by replacing each edge of the form {u2i, u2i+1}, 1 ≤ i ≤ n−2

2 by

r-double cycle. We note that there are n−2
2 double r-cycles. Let Pn be the path u1−u2−· · ·−un

of length n− 1 and let Cr be an r-cycle. For any vertices ui and uj in Cr , we define Puiuj
to be

the shortest path connecting ui and uj and P ′uiuj
to be the path connecting ui and uj of length

r−d(ui, uj). We note that since r is odd, �(Pui,uj
) �≡ �(P ′ui,uj

) mod 2. We first present the result
on the exponent of primitive double alternate circular snake head.

Theorem 3. Let n ≥ 4 is an even positive integer and r ≥ 3 is an odd positive integer. Then

exp(DA(Cr,n)) = n + r− 4.

Proof. We first show that exp(DA(Cr,n)) ≥ n+r−4. We note that for any pair of distinct vertices
u and v in DA(Cr,n) we have exp(DA(Cr,n)) ≥ d(u, v). Hence exp(DA(Cr,n)) ≥ d(u1, un) =
n−1. Notice that the shortest u1un−1-walk of length at least n−1 is the u1un−1-walk of length
n + r − 4. Hence

exp(DA(Cr,n)) ≥ n + r − 4.

We now show that exp(DA(Cr,n)) ≤ n + r− 4. For each pair of vertices uα and uβ it suffices
to show that there is a uαuβ-walk of length n + r − 4. We note if r ≥ 5, then for any pair of
vertices uα and uβ in DA(Cr,n) the distance d(uα, uβ) ≤ n + r− 6. If d(uα, uβ) is odd, then we
can extend the path Puαuβ

of length d(uα, uβ) into a walk Wuαuβ
of length exactly n + r − 4.

We now assume that d(uα, uβ) is even. Then d(uα, uβ) < n + r − 4. We consider four cases
depending on the position of the vertices uα and uβ .

Case 1. The vertices uα and uβ lie on the path Pn. Assume that α < β. Since d(uα, uβ)
is even, we have d(uα, uβ) ≤ n − 2 and the path Puα ,uβ

must contains an edge of the
form {u2i, u2i+1} for some i. This implies the path that start at uα moves to u2i along
the path of length d(uα, u2i), then moves to v2i+1 along the path P ′u2i,u2i+1

of length r − 1,
then finally moves to uβ along the path of length d(u2i+1, uβ) is a uαuβ-path of odd length
�(Puα ,uβ

) = d(uα, u2i) + r − 1 + d(u2i+1, uβ) ≤ n− 3 + r − 1 = n + r − 4.

Case 2. The vertices uα and uβ lie on a double circular C2,r. If uα and uβ lie on the same
cycle Cr, then there is an odd path P ′uα ,uβ

of length r − d(uα, uβ) ≤ n + r − 4. Suppose now

uα and uβ lie on two different cycles Cr . Since d(uα, uβ) is even, we have d(uα, uβ) ≤ r − 1.
We note that the path Puα ,uβ

of length d(uα, uβ) can be decomposed into two paths Puα,uy and
Puy ,uβ

for y = 2i, 2i + 1. Since d(uα, uβ) is even, then �(Puα ,uy) ≡ �(Puy ,uβ
) mod 2. Assume

that �(Puα,uy) ≤ �(Puy ,uβ
). Then the walk that starts at uα moves to uy along the path Puα,uy ,

then moves to uβ along the path P ′uy ,uβ
of length r − �(Puβ ,uy) is a uαuβ-walk of odd length

r − (�(Puα,uy)− �(Puy ,uβ
)) ≤ r < n + r − 4.
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Case 3. The vertices uα and uβ lie on different double-cycle. Suppose uα lies on the cycle with
base {u2i, u2i+1} and uβ lies on the cycle with base {u2j, u2j+1} with i < j. Let Puα,uβ

be the
uαuβ-path of length d(uα, uβ). We note that the vertices u2i+1 and u2j must lie on the path
Puα ,uβ

.
If �(Puα,u2i+1

) ≤ �(Pu2j ,uβ
), then �(Puα,u2i+1

) + �(P ′u2j ,uβ
) ≤ r. Therefore, the walk Wuα,uβ

that consists of the paths Puα ,u2i+1
, Pu2i+1,u2j

, and P ′u2j ,uβ
is an odd uαuβ-walk of length

�(Wuα,uβ
) ≤ n + r− 5.

If �(Puα,u2i+1
) ≥ �(Pu2j ,uβ

), then �(P ′uα,u2i+1
) + �(Pu2j ,uβ

) ≤ r. Therefore, the walk Wuα,uβ

that consists of the paths P ′uα ,u2i+1
, Pu2i+1,u2j

, and Pu2j ,uβ
is an odd uαuβ-walk of length

�(Wuα,uβ
) ≤ n + r− 5.

Case 4. The vertex uα = u1 and uβ lies on a cycle Cr or the vertex uα lies on a cycle Cr and

uβ = un. We first consider the case where uα = u1 and uβ lies on some cycle Cr. Let the base
of the cycle Cr be the edge {u2i, u2i+1} for some i. Then the walk Wuα,uβ

that consist of the
paths Pu1,u2i

and the path P ′u2i,uβ
is an odd uαuβ-walk of length �(Wuα,uβ

) ≤ n + r − 4. If uα

lies on some cycle Cr with base {u2j, u2j+1}, the the Wuα,uβ
that consists of the paths P ′uα ,u2j+1

and Pu2j+1,uβ
is an odd uαuβ-walk of length �(Wuα,uβ

) ≤ n + r − 4.
Therefore, from Case 1-4 we conclude that for each pair of vertices uα and uβ there is an odd

uαuβ-walk of length �(Wuα,uβ
) ≤ n + r − 4. Since Wuα,uβ

is of odd length, it can be extended
to a uαuβ-walk of length exactly n + r − 4. Therefore, exp(DA(Cr,n) ≤ n + r− 4.

We now discuss the scrambling index of the double alternate circular snake graphs.

Theorem 4. Let n ≥ 4 is an even positive integer and r ≥ 3 is an odd positive integer. Then

k(DA(Cr,n)) = (n + r − 3)/2.

Proof. Since d(u1, un) = n−1 is odd, the shortest even u1un-walk Wu1un is the walk that consists
of the paths Pv1,v2i

, P ′u2i,u2i+1
and Pu2i+1,un of length �(Wu1,un) = n − 2 + r − 1 = n + r − 3.

Hence ku1,un(DA(Cr,n)) = (n + r − 3)/2. This implies k(DA(Cr,n)) ≥ (n + r− 3)/2.
We now show that k(DA(Cr,n)) ≤ (n+r−3)/2. Considering Proposition 2 it suffices to show

that for any pair of vertices uα and uβ in DA(Cr,n) there is a uαuβ-walk of length n + r − 3.
We have shown in the proof of Theorem 3 that for each pair of vertices ui and uj there is a
uiuj -walk of length exactly n + r − 4. Let uα and uβ be any two vertices in DA(Cr,n) and let
uγ be a vertex in DA(Cr,n) such that {uγ , uβ} is an edge of DA(Cr,n). By Theorem 3 there is a
uαuγ-walk of length n + r− 4. Since {uγ , uβ} is an edge, there is a uαuβ-walk of length exactly
n + r − 3. Thus k(DA(Cr,n)) ≤ (n + r − 3)/2.
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