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Abstract. Vehicle Routing Problem (VRP) is  an important  element  of  many  logistic  systems  

which involve  routing  and  scheduling  of  vehicles from a depot to  a set of customers node. 

This  is  a hard  combinatorial optimization  problem  with the objective to find   an  optimal set  

of  routes used  by  a fleet  of  vehicles to  serve the demands a set of  customers  It is required 

that these vehicles return to the depot after serving customers’ demand. The problem 

incorporates  time windows, fleet and driver scheduling, pick-up and delivery in the planning 

horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the 

vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. 

We model the problem as a linear mixed integer program. We develop a combination of 

heuristics and exact method for solving the model. 

Keywords: Integer programming, Transportation, Scheduling, Combined method 

 

 
1. Introduction 

Vehicle Routing Problem (VRP) is one of the important issues that exist in transportation system. This  

is  a  well known  combinatorial optimization  problem  which   consists of a customer population with 

deterministic demands, and a central depot which acts as the base of a homogeneous fleet of vehicles. 

The objective is to design a set of vehicle routes starting and terminating at the central depot, such that 

the demand of customers is totally satisfied, each customer is visited once by a single vehicle, the total 

demand of the customers assigned to a route does not exceed vehicle capacity, and to minimize the 

overall travel cost,  taking  into  account  various  operational constraints.  

VRP  was first introduced  by  Dantzig and Ramser (1959). Due to the model has a lot applications, 

particularly in logistic system, and the combinatorial nature contained in the structure of the problem, it 

is not surprising that  many researchers have been working in this area to discover new methodologies 

in order to solve the problems efficiently. There are a number of survey can be found in literature for 

VRP, such as, Caceres-Cruz et al (2014),  Braysy and Gendreau (2005), Cordeau et al. (2007), Golden 

et al. (2002), Laporte and Sement (2002), and books (Golden et al. (2008), Toth and Vigo (2002)). 

Mathematically, VRP can be defined as follows: vehicles with a fixed capacity Q must deliver 

order quantities nonnegative iq  ( 1, ,i n ) of goods to n customers from a single depot (i = 0). These 

vehicles must come back to the depot after serving customers. Knowing the distance ijd  between 

customers i and j ( , 1, ,i j n ), the objective of the problem is to minimize the total distance traveled 
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by the vehicles in a way that only  one vehicle handles the deliveries for a given customer and the total 

quantity of goods that a single vehicle delivers is not larger than Q. 

There are three types of approach have been proposed for solving VRP, viz., exact, heuristics, 

and hybrid ( a combined between heuristics and exact method).  

Bettinelli et al. (2011) propose an exact method called branch-and-cut-and-price for solving VRP. 

Another exact method called column generation was used by Ceselli et al. (2009) and Goel (2010). Kok 

et al. (2010) propose dynamic programming as an exact method for solving VRP. More exact solution 

for VRP can be found in Baldacci et al (2010), and Baldacci et al. (2012). 

Due to NP-hardness of VRP, some meta-heuristics are developed to solve it such as genetic 

algorithms (Cheng and Wang, 2009; Ursani et al., 2011; Vidal et al., 2013), ant colony (Ding et al., 

2012; Yu and Yang, 2011), Tabu search (Belhaiza et al., 2013; Ho and Haugland, 2004), simulated 

annealing (Ban˜ os et al., 2013; Deng et al., 2009; Kuo, 2010; Tavakkoli-Moghaddam et al., 2007, 2011). 

Hybrid approach for solving VRP can be found in Guimarans (2012). 

Pickup and delivery problems (PDPs) are a class of vehicle routing problems in which objects or 

people have to be transported between an origin and a destination. They can be classified into three 

different groups. The first group consists of many-to-many problems, in which any vertex can serve as 

a source or as a destination for any commodity. An example of a many-to-many problem is the Swapping 

Problem (Anily and Hassin, 1992). In this problem, every vertex may initially contain an object of a 

known type of commodity as well as a desired type of commodity. The problem consists of constructing 

a route performing the pickups and deliveries of the objects in such a way that at the end of the route, 

every vertex possesses an object of the desired type of commodity. Problems in the second group are 

called one-to-many-to-one problems. In these problems commodities are initially available at the depot 

and are destined to the customer vertices; in addition, commodities available at the customers are 

destined to the depot. Finally, in one-to-one problems, each commodity (which can be seen as a request) 

has a given origin and a given destination. Problems of this type arise, for example, in courier operations 

and door-to-door transportation services. 

The existing literature on the VRP time windows with pick-up and delivery mainly (VRPTWPD) 

focuses on heuristic algorithms (see e.g., Nanry and Barnes (2000), Røpke and Pisinger (2006)). 

However, there are also a few studies that have introduced exact solution algorithms (see, e.g., Dumas 

et al. (1991), Savelsbergh and Sol (1995), Røpke and Cordeau (2009)). 

In this paper we add the scheduling of fleet and driver in the VRPTWPD. The problem can be 

modeled as a mixed integer linear program. We use a direct search method for solving the problem. 

  

2. VRP  Problem  formulation 
Before we model the VRPTWPD, it is necessary to model the VRP as a framework to model the 

advanced problem.  Let a graph G(V, A) is given with nodes V = C  {0} and arcs A, in VRP C is a 

representation of the set of customers, which 0 is the depot. Moreover, we have a set R of resources 

which e.g. can be load and/or time. Each resource r  R has a resource window [ ,r r

i ia b ] that must be 

met upon arrival to node i  V , and a consumption 0r

ij t  for using arc (i, j)  A. A resource 

consumption at a node i  C is modeled by a resource consumption at edge (i, j), and hence usually 

0 0r

j t  for all j  C. A global capacity limit Q can be modeled by imposing a resource window [0, Q] 

for the depot node 0. 

The VRP can now be stated as: Find a set of routes starting and ending at the depot node 0 

satisfying all resource windows, such that the cost is minimized and all customers C are visited. A 

solution to the VRP will consist of a number of routes which starts from depot and at the end will be 

back to the depot. 

In the following let cij be the cost of arc (i, j)  A, xij be the binary variable indicating the use of 

arc (i, j)  A, and 
r

ijt  (the resource stamp) be the consumption of resource r  R at the beginning of arc 

(i, j)  A. Let +(i) and −(i) be the set of outgoing respectively ingoing arcs of node i  V. Combining 

the two index model from Bard et al. [3] with the constraints ensuring the time windows for the 



3

1234567890‘’“”

4th International Conference on Operational Research (InteriOR) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 300 (2018) 012024 doi:10.1088/1757-899X/300/1/012024

asymmetric travelling salesman by Ascheuer et al. [1]. A mathematical model can be formulated as 

follows: 

( , )
min ij ij

i j A
c x


   (1) 

( , ) ( )
s.t. 1ij

s j i
x

 
    i  C (2) 

( , ) ( ) ( , ) ( )
ij ij

s j i s j i
x x

   
     i  V (3) 

( , ) ( ) ( , ) ( )
( )r r r

ji ji ij ji
s j i s j i

T x T
   
   t   r  R,  i  C (4) 

r r r

i ij ji i ija x T b x    r  R,   (i, j)  A (5) 

0r

ijT    r  R,   (i, j)  A (6) 

{0,1}ijx    (i, j)  A (7) 

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer is 

visited exactly once, and (3) are the flow conservation constraints. Constraints (4) and (5) ensure the 

resource windows are satisfied. It is assumed that the bounds on the depot are always satisfied. Note, 

that no sub-tours can be present since only one resource stamp per arc exists and the arc weights are 

positive for all (i, j)  A : i  C. 

For a one dimensional resource such as load a stronger lower bound of the LP relaxation can be 

obtained by replacing (4) to (6) with 
( , ) ( )

( )iji j S
x r S

 
  , where r(S) is a minimum number of vehicles 

needed to service the set S. All though this model can not be directly solved it is possible to overcome 

this problem by only including the constraints that are violated. 

  

3. Mathematical Formulation of VRPFDPDTW 

To formulate the model, firstly we should refer to the formulation of VRP given in Section 2. Now we 

add another formulation regarding to the fleet and driver scheduling and also pick-up and delivery. Let 

T is the planning horizon  and D is the set of drivers. The set of workdays for driver l D  is denoted 

by lT T . The start working time and latest ending time for driver l D  on day t T  are given by 

t

lg  and 
t

lh , respectively. For each driver l D , let H denote the maximum weekly working duration. 

We denote the maximum elapsed driving time without break by F and the duration of a break by G . 

Let K denote the set of vehicles. For each vehicle k K , let Qk and Pk denote the capacity in 

weight and in volume, respectively. We assume the number of vehicles equals to the number of drivers. 

Denote the set of n customers (nodes) by  1,2, ,N n . Denote the depot by  0, 1n  . Each vehicle 

starts from depot, 0  , and terminates at depot, {0}. Each customer i N  specifies a set of days to be 

visited, denoted by iT T  . On each day it T , customer i N  requests service with demand of 
t

iq  

in weight and 
t

ip  in volume, service duration 
t

id  and time window  ,i ia b . Note that, for the depot  on 

day t, we set 0t t t

i i iq p d   .  

We define binary variable 
t

ijkx  to be 1 if vehicle k travels from node i to j on day t, binary variable 

t

iw  to be 1 if customer i is not visited by a preferred vehicle on day t. Variable 
t

ikv  is the time that vehicle 
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k visits node i on day t. Binary variable 
t

ikz  indicates whether vehicle k takes a break after serving 

customer i on day t. Variable 
t

iku  is the elapsed driving time for vehicle k at customer i after the previous 

break on day t. Binary variable 
t

lky  is set to 1 if vehicle k is assigned to driver l on day t. Variables 
t

lr

and 
t

ls  are the total working duration and the total travel time for driver l on day t, respectively.  

We define the notations to be used as follows. 

Set: 

T  The set of workdays in the planning horizon, 

D  The set of drivers D = DI ∪ DE, 

Tl  The set of workdays for driver l ∈ D, 

K  The set of vehicles, 

N  The set of customers, 

N0  The set of customers and depot N0 = {0} ∪ N, 

Ki  The set of preferable vehicles for customer i ∈ N, 

Ti  The set of days on which customer i N  orders, 

Parameter: 

Qk  The weight capacity of vehicle k K , 

Pk  The volume capacity of vehicle k K , 

cij  The travel cost (time) from node 0i N  to node 0j N , 

lkcd              The cost for driver l D  for vehicle k K  , 

[ai, bi]  The earliest and the latest visit time at node 0i N , 

t

id   The service time of node 0i N  on day it T , 

t

iq  The weight demand of node 0i N  on day it T , 

t

ip  The volume demand of node 0i N  on day it T , 

 [
t

lg , 
t

lh ]  The start time and the latest ending time of driver l D  on day t T , 

t

i              Pick up quantity for customer i on day it T , 

t

i              Delivery quantity for customer i on day it T , 

F  The maximum elapsed driving time without break, 

G  The duration of  break for drivers, 

 

Variables: 

t

ilkx   Binary variable indicating whether vehicle k K  travels from node 0i N to 0j N  on 

day t T , 
t

ikv   The time at which vehicle k K  starts service at node 0i N  on day t T , 

t

ikz   Binary variable indicating whether vehicle k K  takes break after serving node 0i N  

on day t T , 
t

iku   The elapsed driving time of vehicle k K  at node 0i N  after the previous break on day 

t T , 
t

lky   Binary variable indicating whether vehicle k K  is assigned to driver l D  on day 

t T , 
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t

lr   The total working duration of driver l D  on day t T , 

t

ls  The total travel distance of driver l D  on day t T , 

t

jk            Number of pick up demand of customer j served by vehicle k K on day t T  

t

jk            Number of delivery demands of customer j served by vehicle k K on day t T  

 
The problem can be presented as a mixed integer linear programming model. 

The objective of the problem is to minimize costs, which consists of the travel cost from depot to 

customers, travel cost from customer to customer, and the cost for drivers. Mathematically the objective 

can be written as 

0

,

t t t t t

jk ojk ijk lk lk

j N k K t T i N j N j i k K t T l D k K t T

Minimize c x c cd y
          

                              (8) 

 

Subject to: 

01 , (9)t

ji

j N

x i N t T


      

0

1 , (10)t

ij

i N

x j N t T


      

0

t t

i ijk k

i N j N

q x Q
 

    k  K, t  T (11) 

0

t t

i ijk k

i N j N

p x P
 

   k  K, t  T (12) 

(1 )t t t t

jk ik ij ijk iku u c M x Mz       i, j  N0,  k  K, t  T (13) 

(1 )t t

jk ij ijku c M x     i, j  N, k  K, t  T (14)  

0

t t t

ik ij ijk ik

j N

u c x F Mz


     i  N0,  k  K, t  T (15) 

t

i ik ib v a    i  N,  k  K, t  Ti (16) 

0 ( )t t t

k l lk

l D

v g y


    k  K, t  T (17) 

1, ( )t t t

n k l ik

l D

v h y



    k  K, t  T (18) 

0 0

(1 )t t t

l ij ijk ik

i N j N

s c x M y
 

       l  D, k  K, t  Ti (19) 

1, (1 )t t t t

l n k l lkr v g M y       l  D, k  K, t  Ti (20) 

t t

jk j

k K

 


                                               ,j N t T                                     (21) 

t t

jk j

k K

 


                                                  ,j N t T                                    (22) 

, , , {0,1}t t t t

ijk i ik lkx w z y    i, j  N0, l  D,  k  K, t  T (23) 

, , , 0t t t t

ik ik l lv u r s    i, j  N0, l  D,  k  K, t  T (24) 

, {0,1,2,...}t t

jk jk                                         , ,j N k K t T                            (25) 
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Constraints (9-10) are to ensure that only one customer is to be visited. Constraints (11-12) 

guarantee that the vehicle capacities are respected in both weight and volume. Constraints (13-14) define 

the elapsed driving time. More specifically, for the vehicle (k) travelling from customer i to j on day t, 

the elapsed driving time at j equals the elapsed driving time at i plus the driving time from i to j (i.e., 
t

jku  ≥ 
t

iku  + cij ) if the vehicle does not take a break at customer i (i.e., 
t

ikz = 0); Otherwise, if the vehicle 

takes a break at customer i (i.e., 
t

ikz  = 1), the elapsed driving time at j will be constrained by (1) which 

make sure it is greater than or equal to the travel time between i and j (i.e., 
t

jku  ≥ cij). Constraints (15) 

guarantee that the elapsed driving time never exceeds an upper limit F by imposing a break at customer 

i (i.e., 
t

ikz = 1) if driving from customer i to its successor results in a elapsed driving time greater than 

F. Constraints (16) make sure the services start within the customers’ time window. 

Constraints (17-18) describe that the starting time and ending time of each route must be between 

the start working time and latest ending time of the assigned driver. Constraint (19) is to calculate the 

total travel time for each assigned driver. Constraints (20) are necessary to define the working duration 

for each assigned driver on every workday. Constraints (21 – 22) define the pick up and delivery for 

each customer. Constraints (23-25) define the binary and other variables used in this formulation.  

 

4. The Algorithm   
Let 

x = [x] + f,    0  f  1 

 

be the (continuous) solution of the relaxed linear programming problem, [x] is the integer component of 

non-integer basic variable x and  f  is the fractional component. 

There are three stages. 

The first stage. 

Step 1. Get row i* such that  
*

min{ ,1 }
i i i

f f     

              (This is to minimize the deterioration of the objective function, and clearly corresponds to the 

integer basic infeasibility). 

Step 2. Obtain  

 
1

* *

T T

i i
v e B


  

Step 3. Calculate the maximum movement of nonbasic j, using 
*

T

ij i j
v   

 With 𝑗 corresponds to 

min
j

ij

jd



  
 
  

 

 Otherwise go to next non-integer nonbasic or superbasic j (if available). Eventually the column 

j* is to be increased form LB or decreased from UB. If none go to next i*. 

Step 4. 

  Solve  Bj* = j*  for  j* 

Step 5. Do ratio test for the basic variables due to the releasing of nonbasic j* from its bounds. 

Step 6. Perform the exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 

 Repeat from step 1. 

Stage 2. Pass1 : perform a movement of integer infeasible superbasics by fractional steps to obtain the 

complete integer feasibility. 

              Pass2 : do a heuristic for the integer feasible superbasics. The objective of this phase is to 

conduct a highly localized neighbourhood search to verify local optimality. 
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5. Conclusions 

This paper is to develop efficient technique for solving one of the most economic important problems 

in optimizing transportation and distribution systems. The aim of this paper is to develop a model of  

vehicle routing with Time Windows, Fleet and Driver Scheduling, Pick-up and Delivery Problem This 

problem has additional constraints which are the limitation in the number of vehicles. The proposed 

algorithm employs nearest neighbor heuristic algorithm for solving the model.  
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