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Abstract. The sequence space W (M), where M is an Orlicz function was introduced by
Parashar and Choudhary [1] and Maddox [2]. Let f be ϕ-function and X be a Banach space.
In this work, we introduce vector valued sequence space defined by f , denoted by W (X, f). We
study some topological properties and inclusion relations of this space.

1. Introduction and Preliminaries

An Orlicz function is a continuous, convex, non-decreasing function defined from [0,∞) to itself
such that M(0) = 0, M(x) > 0 for x > 0, and M(x) → ∞ as x → ∞. Lindenstrauss and
Tzafriri [3] introduced the sequence space `∃(M) using Orlicz function M as follows

`∃(M) =

{

x = (xk) : xk ∈ R ∀k ∈ N and ∃ρ > 0 such that

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞

}

The space `∃(M) equipped with the Luxemburg norm

‖x‖ = inf

{

ρ > 0 :
∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space `∃(M) is closely
related to the space `p with 1 ≤ p < ∞,

`p =

{

x = (xk) : xk ∈ R ∀k ∈ N and
∞
∑

k=1

|xk|
p < ∞

}

which is an Orlicz sequence space with M(x) = xp. In the mathematical literature there exists
various modifications of these definitions, where ` is replaced by another solid sequence space
(see [4–6]). A sequence space X is said to be solid (or normal) if (λkxk) ∈ X , whenever (xk) ∈ X

and for all sequences (λk) of scalars with |λk| ≤ 1 for all k ∈ N.
A norm ‖ · ‖ on a normal sequence space X is said to be absolutely monotone norm if

x = (xk), y = (yk) ∈ X and |xk| ≤ |yk| for all k ∈ N implies ‖xk‖ ≤ ‖yk‖. The norm

‖x‖∞ = sup |xk|
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over the classical sequence space `∞, c, c0 and the norm

‖x‖ =

(

∞
∑

k=1

|xk|
p

)
1
p

over `∞ for p ≥ 1 are absolutely monotone.
A completed normed space X is said to be a BK-space if the function pk : X → R where

pk(x) = xk is continuous in X for every x = (xk) ∈ X and every k ∈ N. An AK-space X with
the norm ‖ · ‖ is a BK-space and ‖x − x[n]‖ → 0 as n → ∞ for every x ∈ X , where x[n] denotes
the n − th section of x.

Let X be a vector space. The collection of all vector valued sequences denoted by Ω(X). Any
vector subspace of Ω(X) is called vector valued sequence space. The studies on vector valued
sequence spaces are done by Rath and Srivastava [7], Das and Choudhary [8], Leonard [9],
Srivastava and Srivastava [10] and many others.

A function f : R → [0,∞) which is continuous, vanishing at zero, non-decreasing on [0,∞)
and even is called ϕ− function. A ϕ− function f is said to satisfy ∆2 − condition (written as
f ∈ 42 for shortly), if there exists K > 0 such that f(2x) ≤ Kf(x) for every x ≥ 0.

A functional ρ : X → [0,∞) is called a convex modular if ρ(x) = 0 ⇔ x = 0, even,
ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and α, β ≥ 0. In this case, we say that X is a convex
modular space.

Let X = (X, ‖ · ‖X) be a Banach space with an absolutely monotone norm ‖ · ‖X and f

is a ϕ − function. Using convex ϕ − function f , we introduce the following set, denoted by
W (X, f).

W (X, f) =

{

x = (x(i)) ∈ Ω(X) : ρf

(

x(i)− `

α

)

→ 0 as i → ∞, for some α > 0 and ` ∈ X

}

where

ρf(x(i)) =
1

m

m
∑

i=1

f(‖x(i)‖X), for every x(i) ∈ X

is a convex modular.
A function g : X → R is said to be paranorm if g(θ) = 0, g(x) ≥ 0, g(x+y) ≤ g(x)+g(y), even

and every scalar sequence (λn) with |λn − λ| → 0 and every sequence (xn) with g(xn − x) → 0
implies g(λnxn − λx) → 0 for all λ ∈ R and x ∈ X , where θ is the zero in the linear space X .
The notion of paranormed sequence space was introduced by Nakano [11] and Simons [12]. Later
on it was further investigated by Rath and Tripathy [13], Tripathy and Sen [14].

In this work, we investigate some of topological properties of the set W (X, f) equipped with
a paranorm that we will define and study some inclusion relations of this set.

2. Main Results

In this section we examine some topological properties and inclusion relations of the set W (X, f).
Lemma 1. If x, y ∈ X such that 0 ≤ x ≤ y, then ρf(x) ≤ ρf(y).

Theorem 2.1. If ϕ − function f satisfies the ∆2 − condition and convex, then W (X, f) is a
linear space.

Proof. Let x = (x(i)), y = (y(i)) ∈ W (X, f), then there exist α1, α2 > 0 and `1, `2 ∈ X such
that

ρf

(

x(i)− `1

α1

)

→ 0 and ρf

(

y(i)− `2

α2

)

→ 0 as i → ∞
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Take α = max{α1, α2} and ` = `1 +`2. Considering Lemma 1 and the property of ϕ−function,
we have

ρf

(

(x(i) + y(i))− `

α

)

≤ ρf

(
∣

∣

∣

∣

x(i)− `1

α1

∣

∣

∣

∣

+

∣

∣

∣

∣

y(i)− `2

α2

∣

∣

∣

∣

)

Since ρf is convex and f ∈ ∆2, there exists K1
2 , K2

2 > 0 such that

ρf

(

(x(i) + y(i))− `

α

)

≤
K1

2
ρf

(

x(i)− `1

α1

)

+
K2

2
ρf

(

y(i)− `2

α2

)

Consequently, ρf

(

(x(i)+y(i))−`

α

)

→ 0 as i → ∞ . Hence, x + y ∈ W (X, f). Let β ∈ R and

x = (x(i)) ∈ W (X, f), then there exists α > 0 and ` ∈ X such that

ρf

(

x(i)− `

α

)

→ 0 as i → ∞

Choose p = β`. For β = 0, is clear that ρf

(

βx(i)−p

α

)

→ 0 as i → ∞. Now, assume that

β 6= 0. Since f ∈ ∆2, then by using Archimedian there exists n0 ∈ N and K > 0 such that

ρf

(

βx(i)− p

α

)

≤ Kn0ρf

(

x(i) − `

α

)

→ 0 as i → ∞

Therefore, βx ∈ W (X, f) and the proof is complete.

Theorem 2.2. A function g : W (X, f) → R with

g(x) = inf

{

α > 0 : ρf

(

x(i)

α

)

≤ 1

}

is a paranorm.

Proof. It is easy to show that g(θ) = 0, g(x) ≥ 0 and g(−x) = g(x), for every x ∈ W (X, f),
where θ is the zero in the linear space W (X, f). We shall now show the subaddivity of g. Let
x = (x(i)), y = (y(i)) ∈ W (X, f), then there exist α1, α2 > 0 such that

ρf

(

x(i)

α1

)

≤ 1 and ρf

(

y(i)

α2

)

≤ 1

Take α = max{2α1, 2α2}. Considering Lemma 1 and using the convexity of ρf , we have

ρf

(

x(i) + y(i)

α

)

≤
1

2
ρf

(

x(i)

α1

)

+
1

2
ρf

(

y(i)

α2

)

≤ ρf

(

x(i)

α1

)

+ ρf

(

y(i)

α2

)

Therefore, g(x + y) ≤ g(x) + g(y) for every x, y ∈ W (X, f). Finally, we show that scalar
multiplication is continuous. Let (λn) be any scalar sequence and (xn(i)) ⊂ W (X, f), with
|λn − λ| → 0 and g(xn(i) − x(i)) → 0 as n → ∞. Considering Lemma 1 and using the the
convexity of ρf , we have

ρf

(

λnxn(i) − λx(i)

α

)

≤ ρf

(
∣

∣

∣

∣

(λn − λ)xn(i)

α

∣

∣

∣

∣

+

∣

∣

∣

∣

λ(xn(i)− x(i)

α

∣

∣

∣

∣

)

≤
1

2
ρf

(

2|λn − λ|

∣

∣

∣

∣

xn(i)

α

∣

∣

∣

∣

)

+
1

2
ρf

(

2|λ|

∣

∣

∣

∣

xn(i) − x(i)

α

∣

∣

∣

∣

)

≤ ρf

(

2|λn − λ|

∣

∣

∣

∣

xn(i)

α

∣

∣

∣

∣

)

+ ρf

(

2|λ|

∣

∣

∣

∣

xn(i)− x(i)

α

∣

∣

∣

∣

)
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Therefore,

g(λnxn(i)− λx(i)) = inf

{

α > 0 : ρf

(

λnxn(i)− λx(i)

α

)

≤ 1

}

≤ 2|λn − λ| inf

{

α∗ =

(

α

2|λn − λ|

)

> 0 : ρf

(

xn(i)

α∗

)

≤ 1

}

+ 2|λ| inf

{

α∗∗ =

(

α

2|λ|

)

> 0 : ρf

(

xn(i)− x(i)

α∗∗

)

≤ 1

}

= 2|λn − λ| g(xn(i)) + 2|λ| g(xn(i)− x(i)) → 0

Hence, g(λnxn(i) − λx(i)) → 0. This completes the proof of the theorem.

Theorem 2.3. The linear space W (X, f) is a complete paranormed sequence space.

Proof. Let (xn) be any Cauchy sequence in W (X, f) where (xn) = (xn(i)) = (xn(1), xn(2), ...).
This implies for any ε > 0, there exists n0 ∈ N such that for every m ≥ n ≥ n0, we

get g(xm − xn) < ε. Consequently, ρf

(

xm(i)−xn(i)
ε

)

≤ 1. Since ρf is convex, we have

ρf(xm(i) − xn(i)) ≤ ε.
Using the continuity of f , it follows that ‖xm(i) − xn(i)‖X < ε for every ε > 0. Hence, for

every fixed i, the sequence (xn(i)) is a Cauchy sequence in X . It converges since X is complete.
Say, xn(i) → x(i) as n → ∞. Using these limits, we define x = (x(i)) and show that x ∈ W (X, f)
and g(xn − x) → 0. Since X = (X, ‖ · ‖X) is a Banach space, we get

‖xm(i)− x(i)‖X = ‖xm(i)− lim
n→∞

xn(i)‖X = lim
n→∞

‖xm(i)− xn(i)‖X < ε2

Since (xn(i)) ∈ W (X, f), there exists α > 0 and ` ∈ X such that

ρf

(

xn(i)− `

α

)

→ 0 as i → ∞

Using the continuity of f , we obtain

ρf

(

x(i)− `

α

)

= ρf

(

limn→∞ xn(i)− `

α

)

= lim
n→∞

ρf

(

xn(i)− `

α

)

→ 0 as i → ∞

It follows that x ∈ W (X, f). We will show that g(xn − x) → 0. Since f is continuous, then

ρf

(

xn(i)− x(i)

α

)

= ρf

(

xn(i)− limm→∞ xm(i)

α

)

≤ 1

Therefore, g(xn − x) = inf
{

α > 0 : ρf

(

xn(i)−x(i)
α

)

≤ 1
)

. Hence, there exists sequence
(

c
2n

)

, n ≥ 1, for a real number c with g(xn − x) < c
2n , for every n ≥ 1. Therefore, we get

g(xn − x) → 0. We can conclude that W (X, f) is a complete paranormed space.

Theorem 2.4. The linear space W (X, f) is an AK space.

Proof. Let x = (x(i)) ∈ W (X, f), then there exists α > 0 and ` ∈ X such that

1

m

m
∑

i=1

f

(
∥

∥

∥

∥

x(i)− `

α

∥

∥

∥

∥

X

)

→ 0 as i → ∞
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It follows that for every i = 1, ..., m, we have ‖x(i)− `‖X → 0, as i → ∞. Consequently,

1

m

m
∑

i=n

f

(
∥

∥

∥

∥

x(i + 1) − `

α

∥

∥

∥

∥

X

)

→ 0 as i → ∞

Hence, ρf

(

x−x[n]

α

)

→ 0 as n → ∞, where x[n] denotes the n − th section of x. Therefore, for

ε = 1, there exists n0 ∈ N such that for every n ≥ n0, we obtain ρf

(

x−x[n]

α

)

≤ 1. It follows that

g(x− x[n]) → 0 as n → ∞. This completes the proof.

Theorem 2.5. Let f and g be two ϕ − functions, then
(i) W (X, f) ⊆ W (X, g ◦ f)
(ii) W (X, f)∩ W (X, g) ⊆ W (X, f + g)

Proof. (i) Let x = (x(i)) ∈ W (X, f), then there exists α > 0 and ` ∈ X such that

1

m

m
∑

i=1

f

(
∥

∥

∥

∥

x(i)− `

α

∥

∥

∥

∥

X

)

→ 0 as i → ∞

Hence, for every ε > 0, there exists i0 ∈ N such that for every i ≥ i0, we have

1

m

m
∑

i=1

f

(
∥

∥

∥

∥

x(i)− `

α

∥

∥

∥

∥

X

)

< ε

It follows that for every i = 1, ..., m, we have f
(
∥

∥

∥

x(i)−`

α

∥

∥

∥

X

)

→ 0 as i → ∞. Since g is a

ϕ − function, we have g
(

f
(
∥

∥

∥

x(i)−`

α

∥

∥

∥

X

))

→ 0 as i → ∞. Hence, ρg◦f

(

x(i)−`

α

)

→ 0 as i → ∞.

This implies x ∈ W (X, g ◦ f). This concludes the proof.
(ii) The result of this point is obvious.
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