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Abstract. The paper develops a model for the optimal management of logistic delivery of a 

given commodity. The company has different type of vehicles with different capacity to deliver 

the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle 

Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible 

combinations of delivery days and to determine the scheduling of fleet and driver and routing 

policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the 

planning horizon. We propose a combined approach of heuristic algorithm and exact method to 

solve the problem.  
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1. Introduction 

The classical Vehicle Routing Problem (VRP)  is particularly intended to determine an optimal routing 

plan for a fleet of homogeneous vehicles such that to satisfy the need of  a set of customers. As the 

root of this logistic problem is derived from the concept of Hamiltonian graph, it is necessarily to 

impose conditions  that each vehicle route starts and ends at the starting point, and each customer is 

visited once by one vehicle. Since then  many researchers have been working in this area to discover 

new variants and new methodologies. There are a number of survey can be found in literature for 

VRP, such as, [1], [2], [3], [4], and books [5], [6]. 

In literature there are some variants of VRP which are grouped according to specific constraints. 

Some of the well known variants are: Capacitated VRP (CVRP), the vehicles are restricted to carry 

limited capacity; VRP with time windows (VRPTW), each customer is served within a defined time 

frame; multiple depots VRP (MDVRP), in this variant goods can be delivered to a customer from a set 

of depots; VRP with pick-up and delivery (VRPPD), goods not only need to brought from the depot to 

the customers, but also must be picked-up at a number of customers and brought back to the depot. 

Taking into account several days of planning for routing problems is another variant of the VRP, 

known as the priodic VRP (PVRP). 

In PVRP, within a given time horizon, there is a set of customers needs to be visited once or 

several times. There would be a visiting schedules associated with each customer. A fleet of vehicles 

is available and each vehicle leaves the depot, serves a set of customers, when its work shift or 

capacity is over, returns to the depot. The problem is to minimize the total length of the routes 

travelled by the vehicles on the time horizon. This problem is very important in real world 
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applications, such as, distribution for bakery companies [7], blood product distribution [8], or pick-up 

of raw materials for a manufacture of automobile parts [9]. 

A survey on PVRP and its extensions can be found in [10]. Due to the complexity of the 

problem most of the works present heuristic approaches, nevertheless [11] proposed an exact method. 

[12] addressed a combined of heuristic and exact method for solving PVRP. The extension of the VRP 

in which one must additionally decide on the fleet composition is known as the 

Heterogeneous Vehicle Routing Problem (HVRP) is rooted in the seminal paper of [13] 

published in 1984 and have recently evolved into a rich research area. There have also been several 

classifications of the associated literature from different perspectives. [14] provided a general 

overview of papers with a particular focus on lower bounding techniques and heuristics. The authors 

also compared the performance of existing heuristics described until 2008 on benchmark instances. 

[15] presented a review of exact algorithms and a comparison of their computational performance on 

the capacitated VRP and HVRPs, while [16] reviewed several industrial aspects of combined fleet 

composition and routing in maritime and road-based transportation. Afshar-Nadjafi and afshar-Nadjafi 

(2017) propose a constructive heuristic approach for solving HVRP time windows with multi-depot 

and time-dependent. 

Note that all the literature survey of HVRP mentioned in the previous paragraph do not involve 

PVRP. This paper proposes a model of HVRP in which that the customer can be visited more than 

once, and there would be a schedule for visiting customers. 

This paper is organized as follows. Section 2 describes the problem definition and the 

mathematical model. Section 3 presents the feasible neighbourhood heuristic search. The algorithm is 

described in Section 4. Finally Section 5 describes the conclusions 

 

2. Problem Formulation 

The decision of the problem is find the feasible transportation tour of a certain type of vehicle such 

that to minimize the overall operating costs.  In order to ease the  problem, it is necessary to visualize 

the problem using graph. Let   = ( ,  ) be a directed graph,  where   =  {0, 1, ... , n} is the  vertex  

set  and   = {(i, j) :  i, j ∈  , i  j} is the set of arcs, representing routes between vertex.  The depot 

vertex is indexed by 0.  c =  \{0} is the set of customer locations.  Each vertex  i ∈ c  has a demand 

qi  ≥ 0 on each day of the planning horizon, a service time si ≥ 0, a time window [ei, li],  where ie    is 

the  earliest time service may begin and li  is the  latest  time, and requires a fixed number of visits fi to 

be performed according to one of the allowable visit-day  patterns. The time window specifying the 

interval  vehicles leave and return  to the depot is given by [e0, l0]. Let {1,..., }K k  be the set of 

available vehicle of all types. A fleet of m vehicles of each type,  with capacity  Qk is based at the 

depot. 

For each vehicle k K , let Qk denote the capacity in weight. We assume the number of 

vehicles equals to the number of drivers. Denote the set of n customers (/nodes) by  1,2, ,N n . 

Denote the depot by  0, 1n  . Each vehicle starts from  0  and terminates at  1n  . Each 

customer i N  specifies a set of days to be visited . On each day, customer i N  requests service 

with demand of 
t

iq  in weight, within  time window  ,i ia b . Note that, for the depot  0, 1i n  , we 

set 0t

iq  . Denote the set of preferable vehicles for visiting customer i by Ki ( iK K ) and the extra 

service time per pallet by e if a customer is not visited by a preferable vehicle.  

 

This notations used are given as follows : 

Set: 

DI  The set of internal drivers, 

DE  The set of external drivers, 

D  The set of drivers D = DL ∪ DE, 

K  The set of vehicles, 
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N  The set of customers, 

N0  The set of customers and depot N0 = {0, n + 1} ∪ N, 

Ki  The set of preferable vehicles for customer i ∈ N, 

 

Parameter: 

Mk              The available number of vehicles of type k 

Qk  The weight capacity of vehicle k K , 

 [ai, bi]  The earliest and the latest visit time at node 0i N ,  

iq  The weight demand of node 0i N    

[ , ]l lg h   The start time and the latest ending time of driver l D   

i              Pick up quantity for customer i  

i              Delivery quantity for customer i 

kCV        Fixed cost for each type of vehicle k K   from depot 
k

ijCVA       Travelling cost of vehicle k K  along the edge ( , )i j    

kCVN       Cost due to the visit of a customer by non preferable vehicle k K   
k

lCDI        Cost for internal driver l DI  using vehicle k K   

k

lCDE        Cost for external driver l DE  using vehicle k K   

k

jCPQ       Cost to pick up a number of quantity for customer j N  using vehicle k K  

k

jCDD      Cost to deliver a number of quantity for customer j N  using vehicle k K  

 

Variables: 
k

ijx   Binary variable indicating whether vehicle k K  travels from node 0i N to 0j N   

iw   Binary variable indicating whether customer 0i N  is visited by a non-preferable 

vehicle  
k

iv   The time at which vehicle k K  starts service at node 0i N   

k

ly   Binary variable indicating whether vehicle k K  is assigned to internal driver l DI   

k

lz             Binary variable indicating whether vehicle k K  is assigned to external driver l DE   

k

j             Number of pick up demand of customer j served by vehicle k K   

k

j             Number of delivery demands of customer j served by vehicle k K   

 

 

The mathematical formulation for this problem is presented as follows: 

0 0( , )

Min k k k k k k k k

oj ij ij i l l

k K j N k K i j A i N k K l DI k K

k k k k k k

l l j j j j

l DE k K j N k K j N k K

CV x CVA x CVN w CDI y

CDE z CPQ CDD 

       

     

   

 

     

   
       (1) 
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Subject to 

 

                                                  

0

0 1,k
j

j N

x k K


    (2) 

 

 

                                                  01,k
ij

k K j N

x i N
 

    (3) 

 

Constraints (2) and (3)) are to ensure that exactly one vehicle of each type enters and departs from 

every customer and from the central depot.and comes back to the depot. 

 

                                                  
01; , k Kk k

ij ji

i N i N

x x j N
 

                                                   (4) 

 

A flow conservation equation  is necessarily needed to maintain the continuity of each vehicle route on 

each period of time. This equation is presented in Constraints (4).   

 

 

                                                   

0

0 ,k
j k

j N

x M k K


                                                                (5) 

 

Constraint (5) represents that each customer is served only by the available and active vehicle of type 

m. 

                                                   

0

1 1;k
j

j N

x k K


    (6) 

                                                  1

, 1

1;k
i

i N i

x k K
 

    (7) 

 

Constraints (6) and (7) state the availability of vehicles by bounding the number of route, related to  

vehicle k for each type, directly leaving from and returning to the central depot, not more than one, 

respectively. 

                                                   

 

                                                    

0

;k

i ij k m

i N j N

q x Q k K
 

                                                           (8) 

 

Constraints (8)  ensure that each delivery does not  exceed the capacity of each type of vehicle. 

 

 

                                              

0

1t

ijk

k K j N

x
 

                     i  N, t  Ti                                     (9) 

                                            

0\ i

t t

ijk i

k K K j N

x w
 

     i  N, t  Ti                                  (10) 

                                              

0

t t

i ijk k

i N j N

q x Q
 

    k  K, t  T                                  (11)

    

                                           
t

i ik ib v a                  i  N,  k  K, t  Ti                   (12) 
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0 ( )t t t

k l lk

l D

v g y


    k  K, t  T                                  (13) 

                                             
1, ( )t t t

n k l ik

l D

v h y



            k  K, t  T                                  (14) 

   

                                      t t

jk j

k K

 


                                       ,j N t T                                     (15) 

                                         t t

jk j

k K

 


                                      ,j N t T                                    (16) 

                                          , , , {0,1}t t t t

ijk i ik lkx w z y    i, j  N0, l  D,  k  K, t  T    (17) 

                                           , , , 0t t t t

ik ik l lv u r s                   i, j  N0, l  D,  k  K, t  T    (18) 

                                          , {0,1,2,...}t t

jk jk                    , ,j N k K t T                                (19) 

 

Constraints (11) state that each customer must be visited by one vehicle on each of its delivery 

days. Constraints (12) define whether each customer is visited by a preferable vehicle. Constraints (13-

14) guarantee that the vehicle capacities are respected in both weight and volume.  

Constraints (15-16) define the elapsed driving time. More specifically, for the vehicle (k) 

travelling from customer i to j on day t, the elapsed driving time at j equals the elapsed driving time at 

i plus the driving time from i to j (i.e., 
t

jku  ≥ 
t

iku  + cij ) if the vehicle does not take a break at customer 

i (i.e., 
t

ikz = 0); Otherwise, if the vehicle takes a break at customer i (i.e., 
t

ikz  = 1), the elapsed driving 

time at j will be constrained by (10) which make sure it is greater than or equal to the travel time 

between i and j (i.e., 
t

jku  ≥ cij). Constraints (17) guarantee that the elapsed driving time never exceeds 

an upper limit F by imposing a break at customer i (i.e., 
t

ikz = 1) if driving from customer i to its 

successor results in a elapsed driving time greater than F. 

Constraints (18) determine the time to start the service at each customer. If j is visited 

immediately after i, the time 
t

jkv to start the service at j should be greater than or equal to the service 

starting time 
t

ikv  at i plus its service duration 
t

id , the extra service time 
t

ie p  if i is visited by an 

inappropriate vehicle (i.e., 
t

jw  = 1), the travel time between the two customers cij , and the break time 

G if the driver takes a break after serving I (i.e., 
t

ikz  = 1). Constraints (19) make sure the services start 

within the customers’ time window. 

Constraints (20-21) ensure that the starting time and ending time of each route must lie between 

the start working time and latest ending time of the assigned driver. Constraints (22) calculate the total 

travel time for each internal driver. Constraints (23) define the working duration for each driver on 

every workday, which equals the time the driver returns to the depot minus the time he/she starts 

work. Constraints (24) make sure that the internal drivers work for no more than a maximum weekly 

working duration, referred to as 37 week-hour constraints. Constraints (25 – 26) define the pick up and 

delivery for each customer. Constraints (27-29) define the binary and positive variables used in this 

formulation.  

 

3. Proposed Method 
Constraints (13) – (15) express the nature of the variables used in the model. 
Let 

x = [x] + f,    0  f  1 

be the (continuous) solution of the relaxed problem, [x] is the integer component of non-integer 

variable x and  f  is the fractional component. 
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Stage 1. 

Step 1. Get row i* the smallest integer infeasibility, such that  
*

min{ ,1 }
i i i

f f     

              (This choice is motivated by the desire for minimal deterioration in the objective function, 

and clearly corresponds to the integer basic with smallest integer infeasibility). 

Step 2. Do a pricing operation  

 1

* *

T T

i i
v e B


  

Step 3. Calculate 
*

T

ij i j
v   

 With  corresponds to 

min
j

ij

jd



  
 
  

 

Calculate the maximum movement of nonbasic j at lower bound and upper bound. 

 Otherwise go to next non-integer nonbasic or superbasic j (if available). Eventually the 

column j* is to be increased form LB or decreased from UB. If none go to next i*. 

Step 4. 

  Solve  Bj* = j*  for  j* 

Step 5. Do ratio test for the basic variables in order to stay feasible due to the releasing of nonbasic j* 

from its bounds. 

Step 6. Exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 

 Repeat from step 1. 

 

Stage 2. Pass1 : adjust integer infeasible superbasics by fractional steps to reach complete integer 

feasibility. 

              Pass2 : adjust integer feasible superbasics. The objective of this phase is to conduct a highly 

lovalized neighbourhood search to verify local optimality. 
 
4. Conclusions 

This paper was intended to develop efficient technique for solving one of the most economic 

importance problems in optimizing transportation and distribution systems. The aim of this paper was 

to develop a model of Periodic vehicle Routing with Time Windows, Fleet and Driver Scheduling, 

Pick-up and Delivery Problem This problem has additional constraint which is the limitation in the 

number of vehicles. The proposed algorithm employs nearest neighbor heuristic algorithm for solving 

the model. This algorithm offers appropriate solutions in a very small amount of time.  
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