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Abstract. Generally, research on the tsunami wave propagation model can be conducted by
using a linear model of shallow water theory, where a non-linear side on high order is ignored.
In line with research on the investigation of the tsunami waves, the Boussinesq equation model
underwent a change aimed to obtain an improved quality of the dispersion relation and non-
linearity by increasing the order to be higher. To solve non-linear sides at high order is used a
asymptotic expansion method. This method can be used to solve non linear partial differential
equations. In the present work, we found that this method needs much computational time and
memory with the increase of the number of elements.

1. Introduction
Wave propagation, like tsunami waves, can be caused by undersea movement. The problem of
tsunami waves that caused coastal damage has been widely studied by experts. The damage
caused by the waves relates to how far, high and rapid the spreading of water when entering
the coastal area. Studies conducted to understand the evolution of tsunami wave propagation
have been done by using shallow water theories, Boussinesq equations, non-hydrostatic wave
equations, and Navier-Stokes equations [1, 2]. The use of the Boussinesq equation for tsunami
wave propagation has also been used by Groesen and Klopman [3] and Adytia [4]. The
Boussinesq equation is an equation that modeled wave propagation on surfaces propagating in
two opposite directions [5].

One form of the Boussinesq equation, especially for shallow waters known as the shallow
water wave equation [6–8]. In line with the study of tsunami wave investigation, the Boussinesq
equation model undergoes a change aimed at improving the quality of dispersion relation and
inclination by increasing the order to be higher. The complexity in the numerical implementation
arising from the application of the high order Boussinesq model would be modified and solved
by asymptotic expansion methods.

2. Theory
Tsunami waves have an initial wavelength of several tens or hundreds of km. In governing
equations, nonlinear convective tribes and ocean floor friction are relatively small and negligible,
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while the influence of frequency dispersion depends on wavelength and can be included in linear
model governing equations. Non linear effect is not significant, while the effect of frequency
dispersion can be important for shorter waves. Therefore, deep ocean tsunami propagation can
be modeled by linear Boussinesq equations. Furthermore, tsunamis move across the ocean from
the initial location of a tsunami to a coastal area where the water depth is relatively shallower.

A number of governing equations are used to simulate the propagation of tsunami waves,
such as linear Boussinesq equations. After ignoring the nonlinear terms, the linear Boussinesq
equation can be written as follows [9–11]:

∂tu+ g∂xη + u∂xu− H2

3
∂xxtu = 0 (1)

∂tη + ∂x(Hu) + ∂x(ηu) = 0 (2)

3. Methods
In this article, asymptotic expansion method was used to approximate a analytic solution of
shallow water wave equation. To apply this method, the first step had to do is to make an
assumption related to the form of asymptotic method that will be used. Here, the asymptotic
expansion forms of elevation η(x, t) and velocity u(x, t) are written as the following

η(x, t) ≈ εη(1)(x, t) + ε2η(2)(x, t) + ε3η(3)(x, t)

u(x, t) ≈ εu(1)(x, t) + ε2u(2)(x, t) + ε3u(3)(x, t) (3)

where ε is a small parameter in the first order that states the ratio between wave amplitude and
depth. ηj and uj respectively represent solutions for elevation and velocity at the j − order,
j = 1, 2, . . . [5].

4. Results and Discussion
The form of asymptotic expansion of equation(3) is substituted into equations (1) dan (2). After
each side is grouped according to the order of each ε and assigns the value of each part to zero,
it is obtained

O(ε) : ∂tu
(1) + g∂xη

(1) − H2

3
∂xxtu

(1) = 0 (4)

∂tη
(1) +H∂xu

(1) = 0 (5)

O(ε2) : ∂tu
(2) + g∂xη

(2) − H2

3
∂xxtu

(2) = −u(1)∂xu(1) (6)

∂tη
(2) +H∂xu

(2) = −(η(1)∂xu
(1) + u(1)∂xη

(1)) (7)

O(ε3) : ∂tu
(3) + g∂xη

(3) − H2

3
∂xxtu

(3) = −u(1)∂xu(2) − u(2)∂xu
(1) (8)

∂tη
(3) +H∂xu

(3) = −∂x(η(1)u(2) + η(2)u(1)) (9)

4.1. First-order solution
Eliminating u(1) from equations (4 and 5), the following equation can be obtained in term of η.

∂ttη
(1) − gH∂xxη

(1) =
gH3

3
∂xxxxη

(1) (10)
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Solution for first-order equations (10) can be written in the form of cosine equations as follows

η(1)(x, t) = A1 cos(kx− ωt) (11)

where A1, k, and ω, respectively, are wave amplitude, the wave number, and dispersion relation
of wave. Hereafter, the form of this first-order solution is derived respectively to x and t, so that
it is obtained

ω2

k2
= gH

(
1 +

(kH)2

3

)
(12)

4.2. Second-order solution
In the second order we obtain the non homogeneous linear differential equation as follows

∂ttη
(2) − gH∂xxη

(2) =
gH3

3
∂xxxxη

(2) − H

2
∂xx(u(1))2 − ∂xt(u

(1)η(1))) (13)

The following two solutions are taken as solutions to the equation (13).

η(2)(x, t) = A2 cos(2(kx− ωt))

u(1)(x, t) = B1 cos(kx− ωt) (14)

Equation 14 is derived respectively to x and t so we get

∂xx(u(1))2 = −2B2
1k

2 cos(2(kx− ωt))

∂xt(u
(1)η(1)) = 2A1B1kω cos(2(kx− ωt)) (15)

Then equations (12, 14 and 15) are substituted to equation (13), so that the value of A2 can be
written as the following

A2 =
3

5

(
HB2

1k
2 + 2A1B1kω

gH3k4

)
(16)

4.3. Third-order solution
As the second-order, in the third order we obtain the non homogeneous linear differential
equation as follows

∂ttη
(3) − gH∂xxη

(3) =
gH3

3
∂xxxxη

(3) +H∂xx(u(1)u(2)) − ∂xt(η
(1)u(2) + η(2)u(1))) (17)
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By applying the same working principle as in the previous order, for the third order equation,
it is known that the multiplication of the inhomogeneous parts yields

∂xx(u(1)u(2)) = −B1B2k
2
(
9 cos(3(kx− ωt)) + 1

9 cos(kx− ωt)
)

∂xt(η
(1)u(2) + η(2)u(1)) = (A1B2 +A2B1)kω

(
9 cos(3(kx− ωt)) + 1

9 cos(kx− ωt)
)

(18)

where u(2)(x, t) = B2 cos(kx−ωt). Therefore, the solution form for equation (17) can be written
as

η(3)(x, t) = C1 cos(3(kx− ωt)) (19)

The substitution of equations (18 and 19) into equation (17) gives the following results

C1 =
1

60

(
B1B2k + (A1B2 +A2B1)ω

H2k3 cos(3(kx− ωt))

)(
9 cos(3(kx− ωt)) + 1

9 cos(kx− ωt)
)

(20)

Based on the results obtained as written in equation (20), then equation (19) can be rewritten
to

η(3)(x, t) =
1

60

(
B1B2k + (A1B2 +A2B1)ω

H2k3

)(
9 cos(3(kx− ωt)) + 1

9 cos(kx− ωt)
)

(21)

4.4. First solution
Three solutions for each order have been completed. Thus, the Boussinesq equation solution for
tsunami wave propagation obtained by asymptotic expansion method until the third order can
be rewritten as

η(x, t) = εA1 cos(kx− ωt)

+ ε2A2 cos(2(kx− ωt))

+ ε3C1

(
9 cos(3(kx− ωt)) + 1

9 cos(kx− ωt)
)

(22)

with

C1 =
1

60

(
B1B2k + (A1B2 +A2B1)ω

H2k3

)
(23)

and

B2 =
A2ω − 1

2A1B1k

kH
(24)
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4.5. Correction of Wave Numbers
Regarding the essence of applying the asymptotic expansion method is to approach a value, which
is an analytical solution of the shallow water equation. That is, the approximate solutions must
be convergent. Therefore, to obtain a convergent solution, further correction of other parameters
of the wave equation is needed, in this case, that is the wave numbers (k). To do this, the
procedure applied is the same as of for obtaining the solution of each order, as described in the
previous section.

Assuming that the wave numbers (k) has the following expansion shape,

k ≈ k(0) + εk(1) + ε2k(2) (25)

Now, equation (25) is substituted to equation (22) to replace value of (k), so that equation (22)
is rewritten as the following

η(x, t) = εA1 cos
(
(k(0) + εk(1) + ε2k(2))x− ωt

)
+ ε2A2 cos

(
2((k(0) + εk(1) + ε2k(2)) − ωt)

)
+ ε3C1

(
9 cos(3((k(0) + εk(1) + ε2k(2))x− ωt))

+1
9 cos((k(0) + εk(1) + ε2k(2))x− ωt)

)
(26)

Approximate solutions (26) with their each derivative of the variables x and t are resubstituted
to equations (10), (13), and (17) so that we get these following results.

• First-order, O(ε):
The result in first order is a new shape of dispersion relation, namely

ω2

(k(0))2
= gH

(
1 +

(k(0)H)2

3

(
1 + 2k(0)

))
(27)

• Second-order, O(ε2):
In this order, it was obtained k(1) = 0, so that the value of coefficient A2 in the equation
(14) can be rewritten as below

A2 =
k(2)

2

(
HB2

1k
(0) + ωA1B1

gH(k(0))2 − 4
3gH

3(k(0))4 − ω2

)
(28)

• Third-order, O(ε3):
The value of k(1) = 0 obtained in the second-order causes some terms of the third-order,
in which each order is still dependent on the value k(1), can be eliminated. Therefore, the
new expansion form of k can be rewritten as follows.

k = k(0) + ε2k(2) (29)

where

k(2) = −C1

9

(
(k(0))2 + ω2 + 1

3gH
3(k(0))4)

A1k(0)
(
gH(k(0))2) − 2

) )
(30)
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Based on all the above results, now a solution of shallow water equations solved using the
asymptotic expansion method can be described as the new following form

η(x, t) = εA1 cos
(
(k(0) + ε2k(2))x− ωt

)
+ ε2A2 cos

(
2((k(0) + ε2k(2)) − ωt)

)
+ ε3C1

(
9 cos(3((k(0) + ε2k(2))x− ωt))

+1
9 cos((k(0) + ε2k(2))x− ωt)

)
(31)

The coefficient of k(2) has an important role in the expansion of the wave number k. It also
can be interpreted as a consequence of the use of the asymptotic expansion method to obtain
the approximate solution of shallow water equations. In other words, the convergence of the
solution will be achieved when the wave number k is corrected by k(2).

5. Summary
Based on the modified result, asymptotic expansion method is very appropriate in approaching
Boussinesq analytical solution of high order equation. However, the solution that has been
obtained can not be said as a valid solution. This is because of the resonance part, which is the
shape that looks like the form of the first-order solution. Therefore, in order for the solution to
be valid, further correction is required on other parameters in the Boussinesq wave equation.

Meanwhile, the result of modifying the Boussinesq equation into a form that can be solved
by asymptotic expansion method shows that many new coefficients and variables appear. Of
course, the emergence of these new coefficients and variables enlarge the calculation time and
also increase the amount of computer memory used for computer simulation.
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