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Abstract. The sequence spaces (c0)Λ, cΛ, and (`∞)Λ was introduced and studied by Mursaleen
and Noman [11]. In the present paper, for M is a generalization of Orlicz function, we extend
the spaces Mursaleen and Noman’s to [c0(M)]Λ, [c(M)]Λ, and [`∞(M)]Λ, respectively, and
investigate some topological properties of these spaces. Finally, we determine the necessary and
sufficient conditions of an infinite matrix A belonging to classes

(
c0(M), c0(M)

)
,
(
c(M), c(M)

)
,

and
(
`∞(M), `∞(M)

)
.

1. Introduction and Preliminaries
By ω, we denote the space of all sequences of real or complex numbers. Any linear subspace
of ω is called a sequence space. We shall write c0, c, and `∞ for the spaces of all convergent to
zero, convergent, and bounded sequences, respectively.

A sequence space X is called a BK space provided X is a complete normed space and a
function pk : X → R defined by x 7→ pk(x) = xk is continuous for all k ∈ N (see [5]).

The sequence spaces c0, c, and `∞ are BK spaces equipped with sup-norm ‖ · ‖∞ given by

‖x‖ = sup
k∈N
|xk|.

Let A = (ank) be an infinite matrix of real or complex numbers ank, where n, k ∈ N, and X,
Y be the sequence spaces. The map A from X into Y is said to be matrix transformation if
Ax = (An(x)) exists in Y where

An(x) =
∞∑
k=0

ankxk converges for all n ∈ N and all x ∈ X. (1)

We denote (X,Y ) as the class of all infinite matrices that map X into Y . Thus, A ∈ (X,Y ) if
and only if (1) hold, and Ax ∈ Y for all x ∈ X. The theory of matrix transformation deals with
establishing necessary and sufficient conditions on the entries of a matrix to map a sequence
space X into a sequence space Y .

For a sequence space X, the matrix domain of an infinite matrix A in X is a sequence space
defined by

XA =

{
x = (xk) ∈ ω : Ax ∈ X

}
.

The idea of constructing a new sequence space by means of the matrix domain of a particular
limitation method has recently been studied by several authors, e.g., Altay and Başar [1],
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Mursaleen et al. [2], Mursaleen and Noman [11, 12], Malkowsky [9], Malkowsky and Savaş
[10]. Mursaleen and Noman [11] introduced Λ-matrix and constructed the matrix domains
on Λ-matrix in the classical sequence spaces c0, c, and `∞. They examined some topological
properties, established inclusion relations concerning with those spaces, determined their α-, β-,
γ-duals, and characterized some relate matrix classes.

On the other side, Lindenstrauss and Tzafriri [7] introduced the sequence space defined by
Orlicz function as follows :

`M =

{
x = (xk) ∈ ω : (∃ρ > 0)

∞∑
k=1

M

(
|xk|
ρ

)
<∞

}

which is called Orlicz sequence space. The space `M equipped with norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}

becomes a Banach space.
Using the matrix domain XΛ defined by Mursaleen and Noman [11], in this work, we introduce

Λ-matrix domain for the sequences generated by a generalization of Orlicz function M , denoted
by [X(M)]Λ where X ∈ {c0, c, `∞}. Furthermore, we investigate some topological properties of
these spaces over the norm spaces, and give the necessary and sufficient conditions on an infinite
matrix A belonging to classes

(
c0(M), c0(M)

)
,
(
c(M), c(M)

)
, and

(
`∞(M), `∞(M)

)
.

2. Results
2.1. The Sequence Space [X(M)]Λ
A function M : R+ → R+ is called a generalization of Orlicz function which is vanishing at
zero, non decreasing, and continuous. A generalization of Orlicz function M is said to satisfy
∆2-condition for all values of x if there exists a constant K > 0 such that M(2x) ≤ KM(x) for
x ≥ 0. Furthermore, in [11], Mursaleen and Noman defined the infinite matrix Λ = (λnk) by

λnk =


λk − λk−1

λn
; 0 ≤ k ≤ n

0 ; k > n
(2)

where λ = (λk) be a strictly increasing sequence of positive reals tending to infinity, that is,
0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞. By using (2), in the present section we define the
sequence space [X(M)]Λ where X ∈ {c0, c, `∞} and M is a generalization of Orlicz function,
and prove that these sequence spaces according to its norm are complete normed spaces. These
sequence spaces are as follows:

[c0(M)]Λ =

{
x = (xk) ∈ ω : (∃ ρ > 0) M

(
|Λn(x)|
ρ

)
→ 0, n→∞

}
,

[c(M)]Λ =

{
x = (xk) ∈ ω : (∃ ρ > 0, l ∈ R) M

(
|Λn(x)|
ρ

)
→ l, n→∞

}
, and

[`∞(M)]Λ =

{
x = (xk) ∈ ω : (∃ ρ > 0) sup

n∈N
M

(
|Λn(x)|
ρ

)
<∞

}
.

Now, we may begin with the following results which is essential in the text.
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2.2. Linear Topological Structure of [X(M)]Λ
In this section, we examine some topological properties of the sequence spaces defined above.
Theorem 2.1. If M is a convex function, then the sequence space [X(M)]Λ for X ∈ {c0, c, `∞}
is linear space over the set of real numbers R.

Proof. We prove the theorem for X = `∞. Let x, y ∈ [`∞(M)]Λ and α, β ∈ R, then there exist
some positive ρ1 and ρ2 such that

sup
n∈N

M

(
|Λn(x)|
ρ1

)
<∞ and sup

n∈N
M

(
|Λn(y)|
ρ2

)
<∞.

Take ρ = max(2|α|ρ1, 2|β|ρ2), then for a convex function M we get

sup
n∈N

M

(
|Λn(αx+ βy)|

ρ

)
≤ sup

n∈N
M

(
|αΛn(x)|

ρ
+
|βΛn(y)|

ρ

)
≤ sup

n∈N
M

(
|α||Λn(x)|

2|α|ρ1
+
|β||Λn(y)|

2|β|ρ2

)
≤ 1

2
sup
n∈N

M

(
|Λn(x)|
ρ1

)
+

1

2
sup
n∈N

M

(
|Λn(y)|
ρ2

)
<∞.

This proves that [`∞(M)]Λ is linear space.

It is easy to show that [c0(M)]Λ and [c(M)]Λ are also linear spaces.

Theorem 2.2. If M satisfy ∆2-condition, then the space [X(M)]Λ for X ∈ {c0, c, `∞} is
complete normed space equipped with the norm defined by

‖x‖[X(M)]Λ = inf

{
ρ > 0 : sup

n∈N
M

(
|Λn(x)|
ρ

)
≤ 1

}
(3)

Proof. We prove the theorem for X = `∞ and the other cases will follow similarly. Let
x, y ∈ [`∞(M)]Λ. It is easily seen that ‖x‖[`∞(M)]Λ ≥ 0. Next, if x = 0, then obviously
‖x‖[`∞(M)]Λ = 0. Conversely, suppose ‖x‖[`∞(M)]Λ = 0, then for every ε > 0 we get
‖x‖[`∞(M)]Λ < ε. This implies there exists some ρ0 with 0 < ρ0 < ε such that

sup
n∈N

M

(
|Λn(x)|

ε

)
< sup

n∈N
M

(
|Λn(x)|
ρ0

)
≤ 1.

Since M is a generalization of Orlicz function, it follows that for every ε > 0 and for every n ∈ N,

|Λn(x)| =

∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)xk

∣∣∣∣∣ = 0.

Under the assumption that λ = (λk) is a strictly increasing sequence of positive real numbers,
it is easy to check by mathematical induction that xk = 0 for every k ∈ N. Thus, x = 0.

Furthermore, let x ∈ [`∞(M)]Λ and α ∈ R. If α = 0, it is clear that the homogeneous
property of the norm holds. Assume α 6= 0, we get

‖αx‖[`∞(M)]Λ = |α| inf

{
ρ

|α|
> 0 : sup

n∈N
M

(
|Λn(x)|

ρ
|α|

)
≤ 1

}
.
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This gives ‖αx‖[`∞(M)]Λ = |α|‖x‖[`∞(M)]Λ .
Now, let x, y ∈ [`∞(M)]Λ, then there exists some ρ1, ρ2 > 0 such that

sup
n∈N

M

(
|Λn(x)|
ρ1

)
≤ 1 and sup

n∈N
M

(
|Λn(y)|
ρ2

)
≤ 1.

Hence, if we choose ρ = ρ1 + ρ2, then by the properties of M , we have M
(
|Λn(x+y)|

ρ

)
≤

M
(
|Λn(x)|
ρ1

)
+ M

(
|Λn(y)|
ρ2

)
for all n ∈ N. Consequently, ‖x + y‖[`∞(M)]Λ ≤ ‖x‖[`∞(M)]Λ +

‖y‖[`∞(M)]Λ . Hence, [`∞(M)]Λ is a normed space.

Now, suppose that (xi) be any Cauchy sequence in [`∞(M)]Λ. Then, for each ε > 0 there
exists i0 ∈ N and ρ0 where 0 < ρ0 < ε such that

sup
n∈N

M

(
|Λn(xj − xi)|

ε

)
< sup

n∈N
M

(
|Λn(xj − xi)|

ρ0

)
≤ 1.

Hence, for every ε > 0, M
(
|Λn(xj − xi)|

)
< ε. Consequently, |xjk − x

i
k| < ε for each ε > 0, every

j ≥ i ≥ i0, and every k ∈ N, where λ = (λk) is a strictly increasing sequence of positive real

numbers. We see that (xjk) is Cauchy sequences of real numbers. Since R is complete, there

exists xk ∈ R such that xjk → xk as j →∞ for all k ∈ N. Using these limits, we define x = (xk)
and show that x ∈ [`∞(M)]Λ and xi → x as i → ∞ in [`∞(M)]Λ. From (3), we have for all
i ≥ i0

sup
n∈N

M

(
|Λn(xi − x)|

ρ0

)
= lim

j→∞
sup
n∈N

M

(
|Λn(xi − xj)|

ρ0

)
≤ 1.

We obtain ‖xi − x‖ < ε for every i ≥ i0. This shows that

xi → x as i→∞ in [`∞(M)]Λ.

Since xi ∈ [`∞(M)]Λ and M satisfy ∆2-condition, we have

sup
n∈N

M

(
|Λn(x)|
ρ

)
≤ K1

2
sup
n∈N

M

(
|Λn(x− xi)|

ρ

)
+
K2

2
sup
n∈N

M

(
|Λn(xi)|

ρ

)
<∞

for some K1,K2 > 0. It is show that x ∈ [`∞(M)]Λ.
Since (xi) was an arbitrary Cauchy sequence in [`∞(M)]Λ, this proves completeness of

[`∞(M)]Λ.

Now, the following result is immediate by Theorem 2.2.

Theorem 2.3. [X(M)]Λ is a BK space where X ∈ {c0, c, `∞} and [X(M)]Λ is a AK space
where X = c0.

2.3. The Certain Classes of Matrix Transformations
(
X(M), X(M)

)
Theorem 2.4. A ∈

(
c(M), c(M)

)
if and only if for ρ > 0 the following conditions are held :

(i) supn∈NM
(∑∞

k=0 |ank|
ρ

)
<∞,

(ii) limn→∞M
(
|ank|
ρ

)
= αk exists for each k ∈ N, and

(iii) limn→∞M
(
|
∑∞

k=0 ank|
ρ

)
= α exist.
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Proof. For proving the necessity, suppose that A ∈
(
c(M), c(M)

)
. If we choose x = (xk) by xk =

sgn(ank) for all k ∈ N and n ∈ N, then supn∈NM
(∑∞

k=0 |ank|
ρ

)
= supn∈NM

(
|
∑∞

k=0 ankxk|
ρ

)
<∞.

This shows that the condition (i) holds. Furthermore, if we take x = (xj) where for all j ∈ N
and k ∈ N,

xj = e
[k]
j =

{
1 ; j = k
0 ; j 6= k

Since Ax ∈ c(M) for every x ∈ c(M), there exists ρ > 0 such that limn→∞M
( |∑∞

j=0 anjxj |
ρ

)
exist. Hence, for all k ∈ N, limn→∞M

( |∑∞
j=0 anjxj |
ρ

)
= limn→∞M

(
|ank|
ρ

)
. It is shown

that limn→∞M
(
|ank|
ρ

)
exists for each k ∈ N, and the condition (ii) holds. Next, since

x = (xk) = (1, 1, 1, · · · ) belongs to c(M), the condition (iii) holds.
For sufficiency, let xk → r as k →∞ and let the conditions (i), (ii), and (iii) hold. We write

∞∑
k=0

ankxk =

∞∑
k=0

ank(xk − r) + r

∞∑
k=0

ank for all n ∈ N.

Since M satisfy ∆2-condition, then for some ρ > 0 we get

M

(
|
∑∞

k=0 ankxk|
ρ

)
≤ K0

2
M

(
|
∑∞

k=0 ank(xk − r)|
ρ

)
+
Km0+1

1

2
M

(
|
∑∞

k=0 ank|
ρ

)
for all n ∈ N and for some K0,K1 > 0. By (iii), we get limn→∞

K
m0+1
1

2 M
(
|
∑∞

k=0 ank|
ρ

)
=

αK
m0+1
1
2 .

Further, since xk → r as k →∞, we get

K0

2
M

(
|
∑∞

k=0 ank(xk − r)|
ρ

)
+
Km0+1

1

2
M

(
|
∑∞

k=0 ank|
ρ

)
→ α1 as n→∞

where α1 =
αK

m0+1
1
2 . It is shown that M

(
|
∑∞

k=0 ankxk|
ρ

)
→ α1 as n → ∞. Thus, Ax ∈ c(M).

Since for each x ∈ c(M) implies Ax ∈ c(M), we conclude that A ∈
(
c(M), c(M)

)
, which proves

the theorem.

Theorem 2.5. A ∈
(
c0(M), c0(M)

)
if and only if for ρ > 0 the following conditions are held :

(i) supn∈NM
(∑∞

k=0 |ank|
ρ

)
<∞, and

(ii) limn→∞M
(
|ank|
ρ

)
= 0 for each k ∈ N.

Proof. We first derive the necessary conditions (i) and (ii). Since x = (xj) = (e
[k]
j ) belongs to

c0(M), then

lim
n→∞

M

(
|ank|
ρ

)
= lim

n→∞
M

(
|
∑∞

j=0 anjxj |
ρ

)
= 0 for each k ∈ N.

It is shown that (ii) holds. Further, we define x = (xk) by xk = sgn(ank) for all k ∈ N and
n ∈ N. Thus, for some ρ > 0 we have

sup
n∈N

M

(∑∞
k=0 |ank|
ρ

)
= sup

n∈N
M

(
|
∑∞

k=0 |ank||
ρ

)
= sup

n∈N
M

(
|
∑∞

k=0 ankxk|
ρ

)
.
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Since limn→∞M
(
|
∑∞

k=0 ankxk|
ρ

)
exists, then sequence

(
M
(
|
∑∞

k=0 ankxk|
ρ

))
is bounded. Thus,

supn∈NM
(∑∞

k=0 |ank|
ρ

)
<∞, which yields (i) holds.

For proving the sufficiency, let us take any x ∈ c0(M). Since M is continuous, then xk → 0

as k → ∞. Thus, limn→∞M
(
|
∑∞

k=0 ankxk|
ρ

)
= 0. It is shown that Ax ∈ c0(M). Since for each

x ∈ c(M) implies Ax ∈ c(M), then the infinite matrix A belongs to the class
(
c0(M), c0(M)

)
,

which completes the proof.

Theorem 2.6. A ∈
(
`∞(M), `∞(M)

)
if and only if for ρ > 0

sup
n∈N

M

(∑∞
k=0 |ank|
ρ

)
<∞.

Proof. For proving the necessity, suppose that A ∈
(
`∞(M), `∞(M)

)
, that is, for each x ∈

`∞(M) implies Ax ∈ `∞(M). Thus, supn∈NM
(
|
∑∞

k=0 ankxk|
ρ

)
< ∞. Then, define x = (xk) by

xk = sgn(ank) for all k ∈ N and n ∈ N. Thus, for some ρ > 0 and for every n ∈ N, we have

M

(∑∞
k=0 |ank|
ρ

)
= M

(
|
∑∞

k=0 ankxk|
ρ

)
.

Since supn∈NM
(
|
∑∞

k=0 ankxk|
ρ

)
<∞, then supn∈NM

(∑∞
k=0 |ank|
ρ

)
<∞.

For sufficiency, suppose supn∈NM
(∑∞

k=0 |ank|
ρ

)
< ∞ and take any x ∈ `∞(M). Since M is

non decreasing, there exists N1 > 0 such that |xk| ≤ N1 = ρN0 for all k ∈ N. Hence, by using
Hölder inequality [8], we get

sup
n∈N

M

(
|An(x)|

ρ

)
≤ sup

n∈N
M

(
supk∈N |xk|

∑∞
k=0 |ank|

ρ

)
.

Further, by using the Archimedean property, since N1 ∈ R, then there exists m0 ∈ N such that
N1 ≤ 2m0 . Since M satisfy ∆2-condition, we have

sup
n∈N

M

(
|An(x)|

ρ

)
≤ Km0 sup

n∈N
M

(∑∞
k=0 |ank|
ρ

)
<∞

for some K > 0. It is show that Ax ∈ `∞(M). Since for each x ∈ `∞(M) implies Ax ∈ `∞(M),
then the infinite matrix A ∈

(
`∞(M), `∞(M)

)
, and the proof is complete.
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