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Abstract. Direct numerical simulation is employed to investigate the effect of background 

rotation on the evolution of homogeneous isotropic turbulence. The frame of reference rotates 

only in one direction with a rotation numbers varied from 0 to 4, representing both slow and 

fast rotations. In a stationary frame of reference, the turbulence structures are isotropic and its 

energy spectrum exhibits a famous 
5/3




 in the inertial subrange. The background rotation alters 

the isotropic behaviour of the turbulence structures, leading to the formation of columnar 

vortices. The slope of the energy spectrum strongly depends on the rotation number and ranges 

between -5/3 and -3.78. 

1.  Introduction 

Turbulence in background rotation is a fascinating problem because of its appearance in a broad 

variety of geophysical, astrophysical and engineering applications (e.g. turbomachinery, planetary 

rotation, etc.). Experiments of grid-generated decaying turbulence in a rotating tank reveals that the 

slope of energy spectrum ( )E   exhibits a rotation number dependent ranging between -5/3 (slow 

rotation) and about -2.3 (fast rotation) [1]. Early numerical simulations of decaying isotropic 

turbulence in background rotation observed the reduction in the energy flux and the two-

dimensionalisation of the flow [2–4]. However, the conclusive results on the spectral properties of 

turbulence were still missing because only turbulence at low Reynolds numbers could be considered at 

that time due to the limitation of the computational resources. Godeferd & Lollini [5] and Morinishi et 

al. [6] performed direct numerical simulation (DNS) at higher Reynolds numbers and observed the 

similar behaviour of the correlation lengths and the decay properties of the kinetic turbulent energy as 

those found in the experiments of Hopfinger et al. For isotropic turbulence with large scale forcing, 

the energy spectrum behaves as 
2




 in the inertial subrange [8, 9]. In contrast, once the turbulence is 

forced at intermediate scales, the double cascade was found [9, 10]. The energy spectrum exhibits an 

inverse cascade with a slope of 
3




 scaling in a region of wavenumbers 
forcing

   [9, 10], together 

with 
2




 behaviour when 
forcing

   [10–11]. Baqui & Davidson [12] predicted that the growth in 

anisotropy increases linearly as tll  ~/||   (where l


 and ||l  respectively being the integral scale in 

the direction perpendicular and parallel to the rotation axis). Furthermore, they showed that the rate of 

dissipation of energy changes as lu /~ 3  in the inertial range for turbulence in a rotating 

background. Large eddy simulations were also used to investigate the effects of background rotation 
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on homogeneous isotropic turbulence (HIT) by Yang & Domaradzki [13]. They found that at high 

Reynolds numbers, the energy spectrum exhibits a 
2




 slope for the quasi-isotropic state, while a 
3




 

spectrum forms for a strongly anisotropic state. Additionally, the Reynolds stress tensor becomes 

anisotropic after long enough time for low rotation rates but returns to an isotropic state for very 

strong rotation rates. 

The aim of this work is to investigate the response of isotropic turbulence under uniform 

background rotation in a vertical direction to explore the evolution of the turbulence structures and the 

dynamic of the energy spectrum.  

2.  Numerical Approach 

The flow considered in this work is governed by the incompressible continuity and Navier–Stokes 

equations written in a Cartesian tensor notation as 
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where ( , , )
i

x x y z  and ( , , )
i

u u v w  are respectively Cartesian coordinates and the corresponding 

velocity vector, jkijki xu  /  is the vorticity vector and ijk  is the Levi–Civita symbol. The 

quantity t  denotes time and the effective pressure 2
eff j j

P u up    includes the thermodynamics 

pressure p  and the kinetic energy (the summation over the subscript j  being implied). The fluid 

properties, which are density   and kinematic viscosity  , are assumed constant. The frame of 

reference is rotated in the vertical direction with a constant angular velocity (0,0, )
i z
  . 

The simulations are conducted in a periodic cubic box of length 2 2 2    . It is thus suitable to 

Fourier transform the governing equations to perform the spatial derivative. The viscous term is 

integrated analytically using an integrating-factor approach [14]. The Fourier-transformed Navier–

Stokes equations reduce to 

    eff
ˆ ˆˆ

i i iv v
I u I P Hi

t






  (3) 

where ˆ ˆ ˆ ˆ( , , )
i

u u v w  is the velocity in the Fourier space, exp
v j j

I t      is the integrating factor, 

, , )(
x y zi

     is the wavenumber in each direction of the Cartesian coordinates, ˆ 1i    and ˆ
m

H  

is the nonlinear term. Equation (3) is advanced in time with a low-storage third-order Runge–Kutta 

scheme [15]. The divergence-free constrain is enforced via a standard pressure-projection method. The 

nonlinear and Coriolis terms  kkjijku  2  are computed in a real space and then dealiased using 

the 3/2-rule in the Fourier space. 

The initial condition is obtained from the preliminary simulation, whose initial spectrum is given as 

 

2
2

1
, 0 ex)

2
( p

2
p p

q

A
E





  


 


 
  
      

 (4) 

where 2   is a free parameter, 13
p

   is the peak location of the spectrum, 
2

3q   is twice the 

initial kinetic energy, 
1/2

)(
j j

    is the wavenumber magnitude and 
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 The preliminary simulation was performed with the resolution of 160 160 160   and was 

advanced until 6t  , at which the realistic HIT develops. It should be noted that the grid used 

throughout this work is uniform. It can be seen from figure 1 that the energy spectrum at this time is in 

very good agreement with that of Orlandi [16] and Mansour & Wray [17] at almost the same Taylor-

scale Reynolds number  
1/2

uR u


    (where   and u   respectively being the Taylor’s 

microscale and the fluctuation velocity). 

To investigate the effect of the background rotation, the rotation number 
0

2 / 2
z z

N L u    (where 

z
L  being the length of the computational domain in the vertical direction and 

0
u   being the initial 

fluctuating velocity) is varied from 0 to 4. 

 

Figure 1. Energy spectra normalized by Kolmogorov units at; - - - - initial spectrum, ˗˗˗˗˗ present 

simulation ( 55.8Re

 ), × Orlandi ( 54.3Re


 ) [16] and ○ Mansour & Wray ( 54.1Re


 ) [17]. 

3.  Results 

3.1.  Flow Visualizations 

The structure of the three-dimensional turbulence with and without the effect of external rotation is 

visualised by means of the isosurfaces of the second invariant of the velocity gradient tensor 

, ,
0.5

i j j i
Q u u  , normalised by 

2

0
/ 4  (where 

0
  being the magnitude of the initial vorticity). The 

non-dimensional time is defined as 
*

0 0
/t t ke  (where the initial dissipation rate and kinetic energy 

are respectively denoted by 
0

  and 
0

ke ). 

Figures 2(a), 2(c) and 2(e) respectively show the evolution of the turbulence structures at 

0, 0.25N   and 0.5 at 
*

1.7t  . At this time, the turbulence structures for these three cases develop in 

the same manner and look isotropic. The Taylor’s length scale at this time is almost equal at about 

0.15  . In contrast, at 
*

8.5t  , the Taylor’s length scale increases with an increase in the rotation 
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Figure 2. Isosurface of the second invariant of the velocity gradient tensor (
*

Q ), coloured by the 

vertical vorticity, at (left) 
*

1.7t   and (right) 
*

8.5t   for (a,b) 0N  , (c,d) 0.25N   and

(e, f) 0.5N  . 

number. For the case of 0N  , the Taylor’s microscale is about 0.33 and increases to 0.4 and 0.46 

once the rotation number increases to 0.25 and 0.5, respectively. For a very low angular velocity           

( 0.25N  ), the turbulence structures are still isotropic. The anisotropic of the turbulence structures 

seems to appear when the rotation number is about 0.5. This leads to the appearance of the columnar 

vortices, as illustrated in figure 2(f). Thus, it can be concluded that at the early time (
*

0 8.5t   ) the 

*
(a) 1.29Q   

*
(c) 1.11Q    

*
(e) 1.16Q    

*
(b) 0.01Q    

*
(d) 0.01Q    

*
(f) 0.01Q    
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Figure 3. Isosurface of the second invariant of the velocity gradient tensor ( *
Q ), coloured by the 

vertical vorticity, at (a, b) 1N  ;
*

4.7, 8.5t  , (c,d) 2N  ;
*

2.7, 8.5t   and (e, f) 4N  ;
*

1.2, 8.5t   

respectively. 

turbulence structures are not influenced much when a frame of reference rotates slowly ( 0.5N  ). For 

strong background rotation cases ( 1, 2N   and 4), the turbulence structures develop in a different 

way and look more anisotropic, as shown in figures 3(a), 3(c) and 3(e). Additionally, the formation of 

the columnar vortices seems to form very quickly. It should be noted that the time that the columnar 
vortices appear depends strongly on the rotation number. They form earlier with an increase in the 

*
(a) 0.03Q   

*
(c) 0.22Q    

*
(e) 0.77Q    

*
(b) 0.01Q    

*
(d) 0.01Q    

*
(f) 0.01Q    
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Figure 4. The energy spectrum normalised in Kolmogorov variables at 
*

8.5t   of; (a) 0N  ,  

(b) 0.25N  , (c) 0.5N  , (d) 1N  , (e) 2N   and (f) 4N  . 

rotation rate. With time, the small-scale structures are merged with each other, resulting in the 

formation of quantitatively large vertical vortex. These large-scale coherent structures are stretched in 

the vertical direction, leading to the appearance of the columnar vortices. 

At 
*

8.5t  , the length of the columnar vortices increases with an increase in the external rotation 

rate ( 0.45, 0.47   and 0.51 for 1, 2N   and 4), while their number reduces. This suggests that the 

fast background rotation rate quickly alters the isotropic behaviour of the turbulence structures, 

yielding the occurrence of the columnar vortices. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

3/5~ E
  

88.1~ E  

19.2~ E  
63.2~ E  

27.3~ E  
78.3~ E  
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Figure 5. (a) The Slopes of each case on figure 6 and (b) The history of integral of

 2 2 2
0.5 /

x y z
  

 
for   0N  , 0.25N  ,   0.5N  , ◊ 1N  , □ 2N   and × 4N  . 

3.2.   Spectral Analysis 

The changes from isotropic to anisotropic behaviour of the turbulent structures can be observed by 

the plot of the three-dimensional energy spectrum, normalised by Kolmogorov variables, written as 

 
2

0 0 0

1
ˆ( , ) ( , )

2
i x y z

E t u t d d d    
  

     (6) 

where   is dissipation rate and   is Kolmogorov length scale. Figure 4 illustrates the normalised 

energy spectrum for all cases at 
*

t  8.5. For 0N  , the energy spectrum in the inertial subrange 

exhibits a slope
3/5~ E  [18], as shown in figure 4(a). When the frame of reference rotates in the 

vertical direction (figures 4b – 4f), the energy spectrum decays very quickly. The slopes are dropped 

to 
78.3~ E  for the case of 4N  . The range of inertial subrange seems to increase with an increase 

in the rotation number. This leads to the occurrence of an inverse energy cascade (recalled that the 

energy is usually transferred from low-wave numbers to high-wave numbers for normal turbulence, in 

contrast when an inverse energy cascade occurs, the energy is transferred from high-wave numbers to 

low-wave numbers). 

Figure 5(a) shows the slope ( n ) of the energy spectrum in the inertial subrange of each case. The 

slope increases with the rotation number as 
26.0~ Nn . The time history of the ratio of the lateral 

component of the volume-integrated vorticity to its vertical component  2 2 2
0.5 /

x y z
    is 

illustrated in figure 5(b). For zero and low rotation numbers ( 0, 0.25N   and 0.5) the turbulence 

structures are also isotropic at the early time (
*

t  1.7) due to the fact that 
x y z

    . On the 

other hands, for moderate and strong rotation numbers ( 1, 2N   and 4), the vertical vorticity 
z

 is 

greater than the lateral components, suggesting that the turbulence structures are anisotropic. This is 

confirmed by the flow visualisation displayed in figure 3. With time, the effect of the external rotation 

is more influenced, resulting in ,
z x y

   . The anisotropy of the turbulence structures 

becomes stronger with increasing rotation number. 

 

 

 

 

(a)  (b)  
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4.  Conclusion 

Direct numerical simulation is used to investigate the effect of background rotation on the evolution of 

homogeneous isotropic turbulence. The rotation number is varied from N  0 to 4. At low rotation 

numbers ( N  0.25 and 0.5), the turbulence structures does not feel an effect of the background 

rotation much and develops as isotropic turbulence at early time. With time, the background rotation 

plays a role in changing the isotropic behaviour of the turbulence structures. For fast rotation rates       

( N  1, 2 and 4), the anisotropy of the turbulence structures develops very quickly. This leads to the 

appearance of the large-scale vertical vortices. An inverse energy cascade seems to appear in the 

inertial subrange once the background rotation is active. The slope of the energy spectrum in the 

inertial subrange increases with the rotation number as
26.0~ Nn . 
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