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Abstract. This paper presents the development of a wrist mechanism for humanoid robots. The 

research was conducted within the project which develops social humanoid robot Sara – a 

mobile anthropomorphic platform for researching the social behaviour of robots. There are two 

basic ways for the realization of humanoid wrist. The first one is based on biologically inspired 

structures that have variable stiffness, and the second one on low backlash mechanisms that 

have high stiffness. Our solution is low backlash differential mechanism that requires small 

actuators. Based on the kinematic-dynamic requirements, a dynamic model of the robot wrist is 

formed. A dynamic simulation for several hand positions was performed and the driving 

torques of the wrist mechanism were determined. The realized wrist has 2 DOFs and enables 

movements in the direction of flexion/extension 115°, ulnar/radial deviation ±45° and the 

combination of these two movements. It consists of a differential mechanism with three spur 

bevel gears, two of which are driving and identical, while the last one is the driven gear to 

which the robot hand is attached. Power transmission and motion from the actuator to the input 

links of the differential mechanism is realized with two parallel placed identical gear 

mechanisms. The wrist mechanism has high carrying capacity and reliability, high efficiency, a 

compact design and low backlash that provides high positioning accuracy and repeatability of 

movements, which is essential for motion control.  

1.  Introduction 

In the near future, humanoid robots will be working in direct contact with humans, in an environment 

that is dynamic and unstructured, and will be performing numerous and complex tasks. One of 

expectations of modern society is the use of humanoids as an acceptable aid for people with special 

needs, regardless of whether they have a disability or have impaired mobility and motoric functions 

due to their old age. This kind of robots must be safe both for humans and for objects in their 

environment. Apart from this, humanoid joints – mechanisms of which are formed, must fulfil 

numerous requirements that exist during dynamic activity of the robot. Those are high carrying 

capacity and reliability, high efficiency, low noise, low vibration, low backlash which is essential for 

motion control, self-locking that provide the robot posture without actuator power supply, compact 

design etc. Therefore, special attention should be given to the design and realization of the wrist. 

This paper presents the development of a wrist mechanism for humanoid robots. The research was 

conducted as part of the project which develops social humanoid robot Sara that should represent a 

mobile anthropomorphic platform for researching the social behavior of robots – Figure 1. The robot 

will be able to communicate verbally and nonverbally. For expressing facial expressions, biologically 



2

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012079 doi:10.1088/1757-899X/294/1/012079

 

 

 

 

 

 

inspired eyes are being developed with eyelids and eyelashes with total 8 DOFs [1], [2]. To extend the 

spectrum of nonverbal communication, the robot will be able to shrug if a question is confusing or it 

does not know what to answer [3-6]. In addition, Sara will have two anthropomorphic arms with 14 

DOFs, a self-locking neck mechanism with 3 DOFs [7] and a self-locking multi-segment lumbar spine 

with 7 DOFs [8] to increase the mobility of the upper body without moving the lower body.  

The paper is structured as follows: the first section shows the research motivation; the second 

section presents the analysis of existing solutions of the humanoid wrists; within the third section, a 

new wrist solution is proposed – dynamic analysis of the wrist was performed and proposed solution 

of wrist mechanism is presented in detail; the fourth section summarizes the paper contribution and 

outlooks future work. 

1.1.  Human wrist and its mobility 

The wrist is a complex structure that connects the hand to the forearm. It allows the hand and fingers to 

function, it provides and controls the extension and contraction of the long flexors and extensors of 

fingers and it enables fine hand motoric. It consists of the radiocarpal joint that enables extension of the 

wrist, the mediocarpal joint for flexion movements of the wrist, the intercarpal joint consisting of a 

number of smaller joints and the radioulnar joint that enables forearm rotation. Large number of 

muscles and ligaments is involved in wrist movements. The wrist movements are extension – bending 

backward (Figure 2a), flexion – bending forward (Figure 2b), radial deviation – moving the palm to the 

left (Figure 2c) and ulnar deviation – moving the palm to the right (Figure 2d). The range of flexion 

movements is 80÷90°, while the range of extension movements is 70÷75°. Wrist movement in the 

direction of radial/ulnar deviation is approximately 60°, which is 15÷25° for movements of radial 

deviation, respectively 35÷45° for movements of ulnar deviation [9], [10]. 

 

      

 (a) (b) (c) (d)  

Figure 2. The movements of human wrist: (a) bending backward – extension, (b) bending forward – 

flexion, (c) palm motion to the left – radial deviation and (d) palm motion to the right – ulnar deviation 

   

 

 

Joint DOF 

Eyeballs 4 

Eyelids 4 

Neck 3 

Arms 14 

Shrug 1 

Spine 6 
 

Figure 1. Social humanoid robot SARA: current prototype and its kinematic structure 
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2.  State of the art 

There are two basic groups of robots capable to move the hand independently of the forearm by 

activating the wrist. The first group of robots has a wrist with 1, 2 or 3 by which each joint has 1 DOF 

– rigid structures, while the second group of robots has a wrist with 1 joint (condylar joint with 2 

DOFs or ball-and-socket joint with 3 DOFs) – flexible structures. 

Wrist with 1 DOF – movements about the yaw or pitch axis, are found in Affetto [11], Ever-1 [12], 

EveR-2 [13], CB2 [14], ASIMO [15], HRP-4C [16] etc., wrist with 2 DOFs – movements about the 

yaw and pitch axes, are found in iCub [17], Robonaut 2 [18], Albert HUBO [19], AILA [20], TORO 

[21], KIBO [22], HUBO [23], WABIAN-2 [24], KOBIAN [25], ARMAR-III [26], SURALP [27] etc., 

while the wrist with 3 DOFs – movements about the yaw, roll and pitch axes, are found in James [28], 

Justin [29], Romeo [30], BERT2 [31], WE-4RII [32], HRP-4 [33] etc. The wrist mechanism of these 

robots usually consists of rigid and low backlash mechanisms that are interconnected – harmonic 

drive, cable-driven mechanism, spatial linkage mechanism, spindle drive, low backlash gears etc. In 

addition to having high carrying capacity and reliability, the advantage of these mechanisms is low 

backlash that provides high positioning accuracy that enables high accuracy and repeatability of 

movements, which is essential for motion control. 

Biologically inspired wrist structures with 1 joint and 2-3 DOFs – movements about the yaw and 

pitch axes or yaw, roll and pitch axes, are found in Kenta [34], Kenji [35], Kotaro [36], Kojiro [37], 

Kenzoh [38], Kenshiro [39] and Kengoro [40]. The wrist of these robots consists of human-like bones 

and artificial muscles that are based on nonlinear spring units – NST, which has a nonlinear ratio 

between the tension and the spring constant of the tendon. Therefore wrist has variable stiffness which 

is possible to mechanically adjust. The advantage of NST is the simple realization and implementation 

by using only one spring and guided pulleys of tendon – wire.  

3.  Wrist mechanism 

The primary requirement for the realization is adequate hand mobility about the roll and pitch axes. 

The wrist supposed to provide the position and orientation of the hand, because the hand must be in 

the appropriate position relative to the object with which intends to manipulate. Hand is position on 

the certain location by the arm, while the wrist provides the orientation. Therefore wrist must have 

more DOFs. Figure 3 shows a possible wrist design based on a differential mechanism. It consists of 

two driving gears G1 and G2, meshed with driven gear G3 to which the hand of the robot is attached. 

 

 

Figure 3. Kinematic scheme of the differential mechanism: G1 and G2 – driving bevel gears, G3 – 

driven bevel gear to witch the robot hand is attached, DS – driven shaft and BH – bearing housing 

3.1.  Forces and torques 

The hand of the robot is still in development wherefore is approximated with a 1 kg object whose 

centre of mass is located at distance h1 relative to the wrist. Movements of the hand supposed to be as 

natural as possible and therefore is adopted that their duration is no longer than 1 s, which has certain 

dynamic effects as consequences. Based on the preliminary 3D model of the robot arm, a dynamic 

model of the wrist is formed and dynamic simulation is performed within which the driving torques of 
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the wrist mechanism are determined. Three characteristic cases were examined, depending on the type 

of hand movements and the range of motion. The first one is in the direction of flexion/extension and 

the range of motion –90° to 15°, the total of 115° – Figure 3a, the second one is in the direction of 

ulnar/radial deviation and the range of motion –45° to 45°, the total of 90° – Figure 3b, and the third 

case includes simultaneous movements in the direction of flexion/extension –90° to 0° and ulnar/radial 

deviation –45° to 0° – Figure 3c. It should be noted that the forearm is immovable and that the hand is 

appropriately positioned. 

 

   

(a) (b) (c) 

Figure 4. Dynamic simulation of the wrist mechanism: (a) flexion/extension of the hand from –90° to 

15° – forearm is immovable and in vertical position, (b) ulnar/radial deviation of the hand from –45° to 

45° – forearm is immovable and rotated by 45°, (c) simultaneous flexion/extension from –90° to 0° and 

ulnar/radial deviation from –45° do 0° – forearm is immovable and in vertical position 

 

The adopted laws of motion of angle φ, angular velocity ω and angular acceleration ε are: 
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 (3) 

where: T – duration of the movement and H – amplitude of the movement (maximum angle). The 

driving torques of the wrist about the x and y axes are defined as: 

    1cos sinx H y x x Hx GxM m g h J J      (4) 

    1 2 3sin cos cos cosy H y x H y G y y Hy GyM m g h m g h m g h J J          (5) 

where: Hm – mass of the hand, g – gravitational acceleration, Gm – mass of shaft DS with gear G3, 

,Hx HyJ J – moments of inertia of the hand about x and y axes, ,Gx GyJ J – moments of inertia of the shaft 

DS with gear G3 about x and y axes, ,x y  – rotation angles about x and y axes, ,x y  – angular 

acceleration about x and y axes, 1 2 3, ,h h h – centres of mass coordinates of individual segments, seen 

Figure 3. Table 1 shows the values of the input parameters – segment masses, centres of mass and the 

appropriate moments of inertia.  
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Table 1. Input parameters 

Hm   

[kg] 

Gm   

[kg] 

HxJ         

10–4[kgm2] 

HyJ         

10–4[kgm2] 

GxJ         

10–7[kgm2] 

GyJ         

10–4[kgm2] 

1h       

[m] 

2h      

[m] 

3h      

[m] 

1 0.1 117 122 335 346 0.1 0.012 0.02 

 

Given the Eqs. (1) – (5), dynamic simulation of the wrist mechanism has been performed and 

driving torques were determined – Figure 5. Based on the dynamic analysis, the maximum value of the 

driving torque for dimensioning of the wrist mechanism is 0.93 Nm. 

 

   

(a) (b) (c) 

Figure 5. Time histories of the driving torque: (a) movement of flexion/extension (b) movement of 

ulnar/radial deviation and (c) simultaneous movement of flexion/extension and ulnar/radial deviation 

3.2.  Mechanical design 

The realized wrist has 2 DOFs and enables hand movements in the direction of flexion/extension 115°, 

ulnar/radial deviation ±45° and the combination of these two movements – Figure 6. It consists of a 

differential mechanism with three spur bevel gears, two of which are driving and identical, while the last 

one is the driven gear. If driving gears have the same circumferential velocity and the same direction of 

rotation, hand moves about the pitch axis – flexion/extension movements, and for the opposite direction 

of rotation, hand moves about the roll axis – ulnar/radial deviation. If the circumferential velocities of 

driving gears are different, a combination of these two movements is obtained. 

 

 

  

 

 (a) (b)  

Figure 6. Wrist mechanism: (a) CAD model and (b) constitutive parts  
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Structure of the wrist mechanism is presented in Figure 7. It consists of three subassemblies, two of 

which are driving and identical, while the third one is driven to which robot hand is attached. Driving 

subassembly consists of an actuator and elements for power transmission and motion – driving shafts, 

helical gears, driving bevel gear, bearings etc. Actuator consists of a DC motor with graphite brushes, 

planetary gearhead with 3 stages and a magnetic encoder. Driving helical gear is directly attached to 

the gearhead shaft, while driving bevel gear is fixed to the driven helical gear that represent driving 

shaft. Driving subassembly consists of driven shaft, bearings, bearing housing and an output link of 

differential mechanism – driving bevel gear to which robot hand is attached. Low backlash in helical 

and bevel gear pairs is achieved by precise machining of gears, support structures and preloading – 

center distance is done with negative tolerance. Realized wrist mechanism is shown in Figure 8 and its 

configuration is given in Table 2. Hight of the wrist mechanism is 70 mm, its width is 80 mm, its 

length is 85 mm, while mass is 0.57 kg.   

 

 

Figure 7. Wrist mechanism with details – cross section 

 

 

Table 2. Wrist mechanism configuration 

Maxon motor 

RE-max 17 

(2 pcs.) 

Voltage [V] 24 

Power [W] 4 

Torque [mNm] 3.63 

Speed [rpm] 8520 

Planetary gearhead 

GP 16-C 

(2 pcs.) 

Reduction 157 

Torque [Nm] 0.4 

Efficiency [%] 73 

Encoder MR-ML 

(2 pcs.) 

Channels 3 

Counts per turn 512 

Gearing with 

helical gears 

(2 pcs.) 

Reduction 1.74 

Module [mm] 0.9 

Helix angle [°] 20 

Gearing with 

bevel gears 

(2 driving & 1 driven) 

Reduction 1.5 

Module [mm] 1 

Helix angle [°] 0 
 

Figure 8. Wrist mechanism of the robot Sara 
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4.  Conclusion 

This paper presents the development of a wrist mechanism for humanoid robots. Considering that the 

hand is position on the certain location by the arm, while the wrist provides the orientation, basic 

requirement for the wrist realization is adequate mobility about pitch and roll axes. Having in mind the 

analysis of humanoid wrists, we proposed new wrist that require small actuators. Based on the 

kinematic-dynamic requirements, a dynamic model of the robot wrist is formed. A dynamic simulation 

for several hand positions was performed and the driving torques for the wrist mechanism were 

determined. The realized wrist has 2 DOFs and enables movements in the direction of flexion/ 

extension 115°, ulnar/radial deviation ±45° and the combination of these two movements. It consists 

of a differential mechanism with three spur bevel gears, two of which are driving and identical, while 

the third one is the driven gear to which the robot hand is attached. If driving gears have the same 

circumferential velocity and the same direction of rotation, then the movements about the pitch axis – 

flexion/extension of the hand are obtained, and for the opposite direction of rotation, movements about 

the roll axis – ulnar/radial deviation of the hand are obtained. If the circumferential velocities of 

driving gears are different, a combination of these two movements is obtained. Power transmission 

and motion from the actuators to the input links of the differential mechanism is realized with two 

identical helical gear pairs. Wrist mechanism has high carrying capacity and reliability, high 

efficiency, compact design and low backlash that provides high positioning accuracy that enables high 

accuracy and repeatability of movements, which is essential for motion control. Further work will be 

focused to the minimization of the overall dimensions as well as to the reduction of the backlash by 

using spiral bevel gears with small modules.   
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