
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

Generate stepper motor linear speed profile in real time

M Y Stoychitch

University of Banja Luka, Faculty of Mechanical Engineering, Vojvode S. Stepanovica

71, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina

E-mail: mihajlo.stojcic@mf.unibl.org

Abstract. In this paper we consider the problem of realization of linear speed profile of stepper
motors in real time. We considered the general case when changes of speed in the phases of

acceleration and deceleration are different. The new and practical algorithm of the trajectory

planning is given. The algorithms of the real time speed control which are suitable for realization

to the microcontroller and FPGA circuits are proposed. The practical realization one of these

algorithms, using Arduino platform, is given also.

1. Introduction

Stepper motor is an electromechanical device that converts electrical digital pulses into mechanical shaft

rotation. Many advantages are achieved using this kinds of motors, as: (i) precise positioning and
repeatability of movement, (ii) the motor has full torque at standstill (if the windings are energized), (iii)
very reliable and easy maintenance since there are no contact brushes, and (iv) a wide range of rotational
speeds can be realized since the speed is proportional to frequency of the input pulses. Some
disadvantages of these motors are: (i) resonance can occur if not controlled properly, and (ii) not easy
to operate at extremely high speeds, [1], [2].

An important issue about stepper motors is that they are usually used in an open control loop. This
means that the motor control system has no feedback information about the position, which eliminates

expensive sensing and feedback devices.
Many systems with stepper motors need to control the speed using values of acceleration and

deceleration defined in advance. Herein we will analyze the general case, when change of speed in the
phase acceleration and deceleration is linear and different (ramp speed profile). In Figure 1 the

relationships between acceleration
2 [rad/sec]a , deceleration

2 [rad/sec]d , speed [rad/sec]v and

position [rad]s are shown. On this figure with , , and a v dt t t T (all in [sec]) are labeled: the time of

acceleration, time of motion of constant speed, time of deceleration and total time, respectively. Also,

with , , and a v dN N N N (all in [step]) are denoted number of steps on the mentioned time intervals, see

Figure 1.
Since the stepper motor makes steps in discrete time (after each pulse) and the move of every step

is constant, the change of speed is achieved by changing the time interval between successive steps

2

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

Figure 1. Change of speed, position and acceleration

 (pulses). It means that the main problem of speed control is to determine instants of the time it (in [sec]

when pulses (steps) are generated. If speed v [rad/sec] is constant .constv  (independent of whether

it is large or small), it is very easy to determine these instants (or equivalently, generate the pulses). In
this case the time delays it , between two arbitrary adjacent pulses, are the same and they are given as,

./ constvti  , where [rad] is the angle of the rotation motor shaft for every step. But, if the speed

is variable, .iv const , it is more difficult to determine the instants when we need to generate pulses

because the time delay between two successive pulses is changed, ./ constvt ii  . In the case when

acceleration/deceleration are constant, the speed is changed linearly, but the time interval it between

two adjacent pulses is not linear. So, we need to determine the time , 0,1,2,it i , when pulses are

generated and that ensure linear change of speed. It is shown for the acceleration phases in Figure 2.

Generally, the problem of generating appropriate speed profile to a stepper motor we can split in the

two main tasks: 1) to determine a shape the speed change and 2) generate impulses in appropriate instant
of time in order to achieve this speed.

And, at the end of this section, a few words about the structure of the paper. The second section is
related to the trajectory planning (solving of the first task), where based on some input data about the
motion and properties of the selected stepper motor we calculate characteristic points of a movement,

i.e. determining a speed profile. In the third section are given two algorithms based on which to generate
pulses (solving of the second task). One of these algorithms is appropriate for realization using a
microcontroller and another using FPGA circuits. In the fourth section we will propose a way of
realization one of these algorithms. And finally, in the fifth section, are given some conclusions, and
in the appendix is given an Arduino program of practical realization one of algorithms which is
proposed in the previous sections.

.v const

.v const

1t

1t

2t

2t it 1it 

0t

0t

it 1it 

time t

time t

accelerating,

0
t

0t 1t it

it1t 







Figure 2. Constant speed and accelerating step sequences

3

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

2. Trajectory planning

Since the change of speeds are linear, then trajectory planning means that need to determine the number

of steps during which the following phases are realized: acceleration
aN , motion of constant speed ,vN

deceleration
dN as well as the number of steps of the total movement N . In doing so we assume that

the total movement s and the ratio /m a d between acceleration a and deceleration d are given.

Usually, by the stepper motor manufacturer are specified the next parameters: number of steps per round

K [step], starting speed (the stepper motor can go from 0 to this speed in no time)
sv [rad/sec],

maximum speed
Mv [rad/sec] and the maximum acceleration1

Ma [rad/sec2].

Now, our problem can be described as: we need to move a stepper motor for])/[(sN  steps (here

the symbol][ denotes the nearest integer), 2 / [rad]K , so the start speed not higher then
sv , the

acceleration a not higher then
Ma , during the motion the speed v must never exceed the maximum

speed
Mv and the ratio acceleration/deceleration is m.

 At the beginning of trajectory planning we assume that the total movement s can be achieved with

a triangular speed profile, which include only two phases: acceleration and deceleration (we also assume

that the acceleration a during the acceleration phase is maximum,
Ma a). In this case the movement s

is (see Figure 3, left)

2 21 1

2 2
o a d s a a d ds s s s v T at at t dt (1)

where 2 21 1
, = and

2 2
o s a a d a d ds v T s at s at t dt are the motions: due to the start speed vs during the

time T, due to acceleration a on the time ta and due to deceleration d on the time td (we assume that the

deceleration d not limited, but the time 0d at T t), respectively. Since the speed at the end of the

acceleration phase is the same as the speed at the beginning of the deceleration phase, then the next
equation

1
a d a a a

a T
at dt d T t T t t

m m
 (2)

is valid. From the equations (1) and (2) it is obtained
2

2
2 1 2 1

2 0,
1

s

s

v m s maT
s v T T T

m a a
 (3)

from where we get the solving of the above square equation per T, as

1 If the manufacturer is specified the speed in [step/sec] and acceleration in [step/sec2] then relation between

them are: 1[step/sec] 2 / K [rad/sec] and 1[step/sec2] 2 / K [rad/sec2]

Figure 3. Triangular (left) and trapezoidal (right) speed profile

4

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

2

1 1 2 1
.

s sv m v m s m
T

a a a
 (4)

Using this T we calculate the time of the acceleration phase / 1at T m and checking that the speed

s av v at at the end of the acceleration phase is greater than the maximum allowed speed
Mv .

Yes

triangular
speed profile

trapezoidal
speed profile

, , , , ,

/ ,

s M Ms v v a K

m a d

2
, , , 0,M v

s
N a a t

K





 

    
 

 / 1 ,

, 0,

a

d a v

N N m

N N N N

   
  

, ,
1

a d a s a

T
t t T t v v at

m
    



     
2

1 1 2 1s sv m v m s m
T

a a a

    
   

 

Mv v

 

 

   

2

, , 1 ,

, ,
2 1

= , ,

/ , / 1 ,

, ,

s
M a ad a

ad
d ad a ad s ad

ad
v ad v

ad ad a ad

d ad a v ad

v v
v v t T t m

a

aT
t T t s v T

m

s s
t T T t

v

N s N N m

N N N N N N




   

   



 

    

   

end

Figure 4. Flow chart of trajectory planning

If it is
Mv v , then the initial assumptions is true, so that the total movement can be realized with a

triangular speed profile. In this case the number of steps in the acceleration phase
aN and in the

deceleration phase
dN are calculated as

/ 1aN N m ,
d aN N N . (5)

The flow chart of this algorithm of the trajectory planning is shown on Figure 4. However, when
Mv v

is not true, then is the total movement s can be realized with trapezoidal speed profile (see Figure 3,

right). In this case, we additionally need to include a third phase, the phase of moving with constant and

maximum speed,
Mv v . Now, based the speeds and sv v and the accelerating a we calculate the

5

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

time of the acceleration phase /a st v v a and the total the time 1ad aT t m of the both phases,

of acceleration and deceleration, together. Using this
adT we calculate the total movement

ads in the

phases acceleration and deceleration (see (3)) , as
2

2 1

ad
ad s ad

aT
s v T

m
, (6)

so that the movement
vs in the phase of constant speed is

v ads s s . The time
vt during the phase of

constant speed is realized and the total time T of all phases are given as

, ad
v ad v

s s
t T T t

v
. (7)

Now, in the case of trapezoidal speed profile, using of the known movements , and ad vs s s and the step

 , we can calculate the number of steps: , and a d vN N N in the each phases of the motion, as:

/ , / 1 , , ad ad a ad d ad a v adN s N N m N N N N N N . (8)

The complete algorithm of the trajectory planning for the general case of the trapezoidal speed profile
is shown on Figure 4.

3. Generate of the pulses - Algorithms

There are two methods – two group of algorithms for calculating instants of time when pulses must be
generate. They are named as: “time per step” and “steps per time”, that are described in [3-5], [8], [9]

and partly in [6], [7], respectively. Operation mode of the first group of algorithms can be briefly
described as: (i) calculate time period to next pulse, (ii) wait until that much time period elapses, (iii)
generate next pulse and (iv) go back to step (i) and repeat until desired number of pulses is over. The
another group of algorithms have an operation mode that is significantly differently, and briefly can be
described as: (i) check the current time, (ii) multiply it by speed, to get expected current position, (iii)
if difference from expected and actual current position greater than or equal one step, then to generate
new pulse and (iv) repeat this until the final desired position is achieved.

Since in these algorithms all calculations are realized in real time (trajectory planning is not in real
time), i.e. between two steps (pulses), then the basic goal is to find faster algorithms, because this allows
the control of higher speed motors. Also, the difference in the speed generated through these algorithms
and theoretical speeds for the given profile must be as small as possible.

The first group of algorithm is suitable for controllers that are implemented by the microcontroller,
while the second group is suitable for the controllers that are implemented via FPGA circuits. In this
paper are described the both groups of algorithms. From the first group is given the algorithm that is
some modification of the algorithm that is proposed in [8], [9], while from the second group is proposed

an algorithm that partly described in [6], [7].

3.1. Calculate times when the pulses are generated using time per steps algorithm
The first pulse (step) controller generates at the start of motion, at the start of the phase of acceleration,
i.e. at the time 0t , see Figure 5. After the first pulse is generated, the controller needs to calculate the

time period
0t until the next pulse, wait until this period has elapsed, and then generate the next pulse,

at time 1t . This will go on until the desired position is achieved, or in other words, the desired number

of pulses has been generated. At the start, the speed is so vv  , and it retains its value until the moment

1t when it becomes 1v , at the moment 2t becomes 2v , and so on. Since after each pulse the motor makes

one step for the angle  , so that is

i i i

i

v t t
v


      , (9)

where the iv is speed at an arbitrary instant of time it and it the time delay between two successive

6

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

instants of time, 1 and ii tt . In the case when the controller is realized by using a microcontroller, the

1i
t 

1it 

0t

0t

/
o o

v t 

1 1/v t 

1 1/i iv t  

/
i i

v t 

0tsv

0t

1it 

 

a

d

.accel .decel

1it 

it

it

i
i

c
t

f
 

1t

1t

it

it

1it 

1it 

T











time [sec]t

time [sec]t

v
el

o
ci

ty

[r
ad

/s
ec

]
v

Figure 5. Calculate the time when pulses are generated

required time delay it is implemented using counter ic that counts impulses of known frequency f ,

so it is /i it c f  . Based on the above considerations, the speed is changed only at the discrete time it .

But, since inertia always exists, thus we can assume that the speed iv between two arbitrary successive

instants of time 1it  and it , 1i  , changes linearly (see bright lines in Figure 5.). Thus, the speed iv at the

arbitrary instant of time it , and in the phase of acceleration, becomes

1 1, 1i i iv v a t i     . (10)

Using above equations, the value of the counter ic becomes

1

2 2
11 1 1

1

,
1

i
i i a

ii i i a i

i

cf f f a
c c R

cfv v a t R c f
a

c f



  



     
  



. (11)

In a similar way, in the phase of deceleration, we obtain

1

2 2

1

,
1

i
i d

d i

c d
c R

R c f
. (12)

From (11) and (12) we can see that the time delay ic (or equivalently it) is calculated based on the

previous time delay 1ic , 1i , which is already known and what is very suitable for realization. Further,

it implies that it is necessary to determine the initial time delay oc and the time delay during of the phase

of constant speed (if exist)
mc . These time delays are obtained based on the start speed

sv and the

maximum speed
Mv , respectively, as

 and o m

s M

f f
c c

v v
  . (13)

After detailed analysis and simulation of the above proposed algorithm, in [9] was shown that the

speed profile that generated by stepper motors more exact (closer to the theoretical) if in the first and
last five steps are introduced some corrections. These corrections are realized by using the next equations
(i  the current number of steps)

7

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

51,
08.0

1 







 i

i
cc ii and 51,

08.0
1 










 iN

iN
cc ii . (14)

where are i the current number and N the total number of steps. For more details see paper [9]. On the

Figure 6 is given flow chart of this algorithm (without the corrections that are given by (14)).

, , , , ,

, , 0,

a d a d

o m

N N N R R

C C C n 

end

end

CalcC(C,n)

aR R

mC C

,C n

dR R

2
1

C
C

RC




Y

Y

Y

Y

1n n 
OneStep(dir)

n N
an N

dn N N 

timeDelay(C)

Figure 6. Flow chart of the algorithm from section 3.1

3.2. Calculate times when the pulses are generated using steps per time algorithm

Calculating the time delay between two pulses using algorithm that is given by equations (11) and (12)
require two multiplication, one addition, and one division (all with float number of double precision)
for each step. This algorithm it is not suitable for implementation by using FPGA circuits, because
multiplication and division with them is difficult or very slow. Unlike them, the addition and subtraction
with this circuits is realized very easily and very fast. Therefore, for FPGA-based controllers, it is

necessary to find another algorithms, in which for all calculations in real time, are used only addition
and subtraction operations.

 It is known from theory that between the acceleration  a t , velocity  v t and position  p t , at

some time interval  0,T , the following relations apply:

        
0 0

 and , [0,]

t t

v t a d p t v d t T    . (15)

Above equations are given in a continuous domain. In a discrete domain with a constant time period ,sT

so it is
sT MT , where

sT is very small real number and M is integer, these equations at discrete time

interval , 0,1,2, , , k st kT k m m M   become:

8

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

           
0 0

 and
m m

s s s s

k k

v kT v k a k T p kT p k v k T
 

     . (16)

According equation (16), if it is dimension of the acceleration a in 2steps / sT   , then dimension of the

velocity v is in  steps / sT and dimension of the position p is in  steps (for example: if it is
sT in

 ms - milliseconds, then a in 2steps / ms   , v in  steps / ms and p in  steps).

 From (16) it can be seen that for calculating, for example    
0

m

sk
p k v k T


 , necessary addition

and multiplication with
sT . But if this equation it is solved at every

sT , then multiplication with
sT is

not necessary, since at every instant of time
sT the new part of position    1 1sv k T v k is added to

the existing value of position.

Y

Y

Y

Y

Y

n N

 stoj = true

end

end

n N

, , , , , , 0,

0, ,

a dN N N v A D n

p stoj false



 

 interrupt
procedure

a dN n N N  

dn N N 

0A

A D

stoj

v v A

p p v

 

 

1p n 

OneStep(dir)
1n n 

Figure 7. Flow chart of the algorithm from section 3.2

 And finally, let the dimensions are: of acceleration 2 steps / sa T   , of speed   steps / sv T and of

positions   stepsp , and let at the initial time
0 0 , 0st kT k   , their values are: acceleration A ,

sspeed V , 0position  and number of steps 0steps  , then by solving the next equations:

speed speed acceleration

position position speed

 

 
 (17)

at every instant of time
sT , it is equivalent to the solution of the equations (16). The value of position

that is given from (17) it is the same to the expected current position, and value of the steps is the same

9

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

to the actual current position. The instant of time when a new pulse (step) is generated now is determined
from the next requirement: if (position-steps >= 1) then the new pulse is generated and the new actual
current position steps becomes steps=steps+1. Flow chart of this algorithm is shown in Figure 7. In this
flow chart the next label: p – position, n – steps, v- speed and A-acceleration are used.

 The implementation of the procedure (17) (i.e., the solution of the equation (16)) is easiest to

accomplish using an interrupt, where interrupt occurs by every
sT instant of time. The value of the time

period
sT depends of the motion parameter (, ,M MK a v) and of type and speed of a processor, which is

the problem of special analysis that is not the subject of this paper.

4. Implementation of the steps per time algorithm

Based on the consideration in the sections II and III, the algorithm that is proposed in section 3.2 (step
per time algorithm) is implemented by using the microcontroller ATMega328. In this implementation
as a hardware we use the 28BYJ-48 stepper motor (power supply 5V-DC, 4096 steps per round, because
the motor has 64 steps and a gear unit with 64:1 ratio, so that 64*64=4096), the driver based on the ULN
2003 circuit and the Arduino UNO as a platform of the ATMega328 microcontroller, see Figure 8.

Figure 8. Devices for the experiment: Arduino, driver and stepper motor

 Arduino program through which, based on the entered data, the planning of the trajectory and
generation of the pulses using the steps per time algorithm (section 3.2) is given in the appendix. In this

program we use the interrupt frequency F = 10 000 Hz, so that the time period 1/ 0.1 mssT F  . Since

the inputs data for acceleration, speed and position the next units of measure: [rad/sec2], [rad/sec] and
[deg] are used, respectively, then it must be translated into new units: [steps/Ts

2], [steps/Ts] and [steps].

This conversion are achieved using the following relations: acceleration [rad/sec2]
2 / 2 /K F 

acceleration[steps/Ts
2], speed[rad/sec] / 2 /K F  speed[steps/Ts] and position [deg] / 360K 

position [steps].

 The given program enables the input and change of all parameters of movement, as well as their
displaying. After the reset, the initial values are loaded, and the current position of the stepper motor
shaft is considered as a zero position. After each next entry of the new position, the program determines
the direction and value of the angle from the current to the new position and plans the trajectory between
these two positions.

10

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

5. Conclusion

In this paper, problem of the control of a stepper motor with linear change of the speed is considered.
This problem involves solving two tasks. The first task (that is solved in section 2) is the trajectory
planning so that all requirements relating to the parameters of motor and motion are fulfilled, while the

second task is the real-time control of the motor motion, according to the requirements from the first
task (this task is solved in section 3). The general case is analyzed, when the absolute values of the
acceleration in the phases of acceleration and deceleration are different. Two completely different
algorithms related to real-time control of motors are proposed. One of these algorithms is adapted for
controllers based on FPGA circuits, while both algorithms are suitable for controllers that are based on
a microcontroller.

All the theoretical considerations in this paper were simulated by experiment. The results of the
experiment confirm the proposed theoretical considerations and show that are all proposed algorithms

very fast and simple.

Appendix

Arduino program

#define K 4096 //number of steps per one revolution
#define F 10000 //interrupt frequency 10kHz
//
float s = TWO_PI,vs = 0.5,vM = 2,aM = 2.0, m = 2,T,ta,tv,td,ss,aa = aM,vv = vM;//a[rad/sec^2],v[rad/sec],s[rad]
double alfa = TWO_PI/K, Af = aM/alfa/F/F, Vsf = vs/alfa/F, Df = -Af/m, //Af[steps/Ts^2],Vsf[steps/Ts]
 brzina = Vsf, pozicija = 0; //
//cN-current number of steps, dN-desired number of steps
long N, Na, Nv, Nd, broj, cN, np = -1;
byte cw[] = {0b0001, //A,
 0b0011, //A,B
 0b0010, //B,
 0b0110, //B,C
 0b0100, //C,
 0b1100, //C,D
 0b1000, //D,
 0b1001}; //D,A
byte dcw = sizeof(cw), kk = 0, maska = 0xF0, ledPin = 13;
char ch, chh;
boolean smjer = true, stoj = true;
//
void setup() {
 Serial.begin(9600);
 Serial.print("CONTROL of STEPPER MOTOR\n");
 Serial.print("Commands: Pxxxx, desired position s[deg]X10 \n");
 Serial.print(" Bxxx, start speed vs [rad/sec]X10 \n");
 Serial.print(" Vxxx, max. speed vM [rad/sec]X10 \n");
 Serial.print(" Axxx, max. acce aM [rad/sec2]X10 \n");
 Serial.print(" Rxxx, the ratio m*10 of acce/dece \n");
 Serial.print(" S,-stop, M,- move, W-write paramet. \n");
 //
 DDRB = 0b00001111; //pins 8,9,10,11 are outputs
 PORTB = PORTB & 0xF0; //all outputs are zero
 pinMode(ledPin,OUTPUT); //led pin, this pin start and stop is labeled
 //settings interrupt, every 1/10[ms] the interrupt has occurred

11

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

 cli(); // disable global interrupts
 TCCR1A = 0; // set entire TCCR1A register to 0
 TCCR1B = 0; // same for TCCR1B
 TCNT1 = 0; // initialize counter value to 0
 // dF-desired interrupt feq., pS- prescaler, cR-compare match register
 // cR=[16*10^6/(pS*dF)]-1
 // if dF=10^4, pS=1(no prescaler) => cR=[16*10^6/(1*10^4)]-1=1599
 // set compare match register to desired timer count:
 OCR1A = 1599;
 TCCR1B |= (1 << WGM12); // turn on CTC mode:
 TCCR1B |= (1 << CS10); // Set CS10 bit for no prescaler:
 TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt:
 sei(); // enable global interrupts
}
// interrupt procedure, every 1/10000 [sec]=1/10[ms] program calls this procedure
ISR(TIMER1_COMPA_vect){
 //
 if (stoj) return;
 brzina = brzina + Af;
 pozicija = pozicija + brzina;
 if (pozicija - np >= 1) {
 oneStep(smjer);
 np++;
 }
}
//motor makes one step, if right = 1, then direction = CW
void oneStep(boolean right){
 if (right) { PORTB = (PORTB & 0xF0) | cw[kk++] ; cN++; }
 else { PORTB = (PORTB & 0xF0) | cw[dcw-1-kk++]; cN--; }
 if (kk == dcw) kk = 0;
}
//
void loop() {
 if (np >= Na && np < N-Nd) Af = 0; //speed is constant
 if (np >= N-Nd) Af = Df; //begin of deceleration
 if (np >= N) {
 stoj = true;
 Serial.print("..\n");
 Serial.print("STEPS = "); Serial.print(cN); Serial.print(" [steps]\n");
 Serial.print("ANGLE = "); Serial.print(cN*360.0/K,2);Serial.print(" [deg]\n");
 Serial.print("POSITION = "); Serial.print(float(cN*alfa),2);Serial.print(" [rad]\n");
 np = -1; pozicija = 0; brzina = Vsf;
 digitalWrite(ledPin,LOW);
 }
}
//this procedure enables the entry of new data
void serialEvent(){
 if (Serial.available() > 0){
 ch = toupper(Serial.read());
 if (ch == 'P' || ch == 'B' || ch == 'V' || ch == 'A' || ch == 'W'
 || ch == 'R' || ch == 'S' || ch == 'M') chh = ch;
 if (ch >= '0' && ch <= '9') broj = broj*10 + int(ch - '0');
 //analiza komandi

12

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

 if (ch == ','){
 if (chh == 'P') {
 s = broj/10.0; // s[deg]
 stoj = planTrajek(s);
 }
 if (chh == 'B') vs = broj/10.0;
 if (chh == 'V') vM = broj/10.0;
 if (chh == 'A') aM = broj/10.0;
 if (chh == 'R') m = broj/10.0;
 if (chh == 'S') stoj = true;
 if (chh == 'M') stoj = false;
 if (chh == 'W') pisiSve();
 broj = 0;
 }
 }
}
//this procedure displaying current data
void pisiSve(){
 Serial.print("\n..\n");
 Serial.print("Displacement s = ");Serial.print(s,2); Serial.print("[deg]\n");
 Serial.print("Start. speed vs = ");Serial.print(vs,2);Serial.print("[rad/sec]\n");
 Serial.print("Max. speed vM = ");Serial.print(vM,2);Serial.print("[rad/sec]\n");
 Serial.print("Max. accler. aM = ");Serial.print(aM,2);Serial.print("[rad/sec^2]\n");
 Serial.print("Ratio of a/d m = ");Serial.print(m,2); Serial.print("\n");
 Serial.print("Stop = ");Serial.print((stoj)? 1:0);
 Serial.print(", Move = ");Serial.print((stoj)? 0:1);Serial.print("\n");
 Serial.print("..\n");
}
//trajectory planning procedure
boolean planTrajek(float _s){
 Serial.print("\nDATA: newP = ");Serial.print(_s,2); Serial.print("[deg], ");
 Serial.print(", curP = "); Serial.print(float(cN*360.0/K)); Serial.print("[deg]");
 //
 N = int(_s*K/360.0) - cN ; //difference from desired and current position [steps]
 if (N < 0) smjer = false;
 else smjer = true;
 if (N == 0) {np = -1; return true;} //
 //
 N = abs(N); float s_ = N*alfa;
 T = sqrt(pow((vs*(1+m)/aa),2)+2*s_*(1+m)/aa)-vs*(1+m)/aa; //N = round(s/alfa);
 ta = T/(1+m); vv = vs + aa*ta; //td = (T-ta); tv = 0;
 if (vv <= vM){//TRIANGULAR PROFILE
 Na = int(N/(1+m)); Nd = N - Na; Nv = 0;
 }else{ //TRAPEZOIDAL PROFILE
 vv = vM; ta = (vM-vs)/aa; T = (1+m)*ta; ss = vs*T+aa*pow(T,2)/(2*(1+m));
 //ss - is tha part of movement in the phases of acceleration and deceleration only
 //np - number of steps on the movement ss
 np = int(ss/alfa); T = (1+m)*ta+(s_-ss)/vv; //tv = (s_-ss)/vv; td = T - ta - tv;
 Na = int(np/(m+1)); Nd = np - Na; Nv = N - np; //Nv - number of steps in the phase v=const.
 }
 //Vsf [steps/0.1ms] - the start speed, Af[steps/(0.1ms)^2]-acceleration, Df-deceleration
 Vsf = vs/alfa/F; Af = aa/alfa/F/F; Df = -Af/m;
 brzina = Vsf; pozicija = 0; np = 0;

13

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012055 doi:10.1088/1757-899X/294/1/012055

 Serial.print(", dN = "); Serial.print(N); Serial.print(", Direction = ");
 Serial.print((smjer)?"CW.\n":"CCW.\n");
 digitalWrite(ledPin, HIGH);
 return false;
 //
}

References

[1] *** Industrial Circuits Application Note, Stepper Motor Basis, http://solarbotics.net/library/
pdflib/pdf/motorbas.pdf

[2] Condit R, Douglas W Jones, Stepping Motors Fundamentals, Microchip AN907,
http://homepage.cs.uio- wa.edu/~jones /step/ an907a.pdf

[3] Austin D 2005 Generate stepper motor speed profiles in real time, Embedded Systems

Programming, www.embedd ed.com/56800129
[4] *** Atmel Corporation, AVR446: Linear speed control of stepper motor, Application note,

http://fab.cba.mit.edu/ classes/ MIT/961.09/prjects/i0/doc8017.pdf
[5] Eiderman A, Real Time Stepper Motor Linear Ramping Just by Addition and Multiplication,

http://hwml.com/ LeibRamp.pdf
[6] Ranade P 2009 Linear Motor Control Witdout the Math, SPJ Embedded Technologies,

http://www.eetimes.com/document.asp?doc_id=1276928

[7] *** Stepping Motion Profiles in Realtime, http://picprog.strongedge.net/step_prof/step-
profile.html

[8] Stoychitch M Y 2012 Linear Speed Control of Stepper Motor in Real Time, XI International
SAUM Conference on Systems Automatic Control and Measurements, Niš, Serbia,
November 14th-16th, pp 406-409, http://www.ni.ac.rs/images/stories/events/
SAUM_2012_abstracts.pdf

[9] Stoychitch M Y 2013 An Algorithm of Linear Speed Control of a Stepper Motor in Real Time,

Annals of Faculty Engineering Hunedora, International Journal Engineering XI (3) 51-56,
http://annals.fih.upt.ro/pdf-full/2013/ANNALS-2013-3-06.pdf

