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Abstract. The purpose of this paper is the development and validation of an impulse excitation 

technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The 

experimental measurement of the vibroacoustic response is carried out by using a condenser 

microphone as a transducer. By the means of Modal Analysis using Finite Element Method 

(FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are 

determined. The vibration responses of the specimens, in simple supported conditions, are 

carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of 

the modal parameters estimated using Finite Element Analysis (FEA) these are compared with 

experimental ones. 

1.  Introduction 

Rotating machinery is seen in most industrial or domestic applications of our everyday life. During 

their operation rotating machines are carrying a kinetic energy of rotation and a vibratory kinetic 

energy. The purpose of rotor dynamics is to determine how a ratio between vibrational and rotational 

energy can be kept as small as possible. This can be done if the operation of the machines takes place 

in a speed range far away from the critical speeds. 

The first reference to a limit speed over which rotating machines can not function safely was 

Rankine [1], which introduced the term whirling into the rotor dynamics vocabulary. The proposed 

model for studying the dynamics of a rotor was with two-degree system of freedom, which did not 

take into account the effect of Coriolis's inertial force, leading to the unlimited increase of radial 

deformations. This model has caused confusion amongst engineers and has delayed the development 

of turbo machines for nearly 50 years. 

Laval was the first engineer who felt the operation of the machinery over the critical speed building 

a steam turbine to operate at 40 000 rpm. Dunkerly [2] and Föppl [3] have continued investigations in 

this area recognizing the existence of several critical speeds which in some circumstances, coincides 

with the natural frequencies of the rotor shaft system.  

The first fundamental work in the field of rotor dynamics was that of Jeffcott [4], in which he 

considered a model of flexible shaft without mass and a rigid disc placed in the middle of the shaft, 

and which confirmed Laval and Föppl predictions. This model is named Jeffcott Laval. Important 

developments in rotor dynamics have been made by Stodola [5], which, among other things, has laid 

down some approximate methods for determining critical speeds. The graphical procedure proposed 

by him was widely used until the introduction of the transfer matrix method by Myklestad [6] and 

Prohl [7]. 
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With the development of digital computer capacity, a series of codes have been developed to solve 

numerical problems in rotor dynamics. The Finite Element Method (FEM) became the strongest and 

most used code since the 1970s. Now, with the explosion of computer computing power, FEM 

techniques can be combined with model techniques to generate simulations that allow coupled 

behavior of flexible discs, flexible shafts, and flexible support structures into a single, massive, 

multidimensional model [8]. 

In this paper an approximate analytical / analytical determination of the critical speeds is made, for 

a shaft with a rotor and a three-rotor shaft. The results are compared with those obtained numerically 

by applying the Modal Analysis Method using the meshing technique based on the Finite Element 

Method. In the experimental way is developed a method for determination the critical speeds from the 

analysis of some vibroacoustic signals that validate the results obtained by the analytical or numerical 

methods. 

2.  Analytical analysis 

Figure 1 shows a negligible mass shaft relative to the mass m of a Jeffcott rotor, placed midpoint 

between the rigid bearings.  

 

 

 

Figure 1. A Jeffcott rotor model in xoy 

plane 

 Figure 2. Free body diagram of the rotor in 

yoz plane 

The geometric center of the disk C is located at the point (yC, zC) along coordinate axis defined about 

the bearing center line, and the disk center of mass G is located at (yG, zG).The vector e connecting the 

points C and G, represents the unbalance in the rotor disk. The rotating speed of the disk is given by ω. 

The lateral bending stiffness at the axial center of a simply supported uniform shaft is given by  

 
3

48EI
k

L
 , (1) 

where E is the elastic modulus of the shaft, L is the length between the bearings, and I is the geometric 

inertia moment of cross area section. For a uniform cylindrical shaft with diameter d, the equation for 

the area moment of inertia is 

 
4d

I
64


 . (2) 

The dynamic equations for the rotor are derived by applying Newton’s law of motion to the rotor 

disk. With the assumption that the shaft is massless, the forces acting on the disk are the inertial force, 

the stiffness and damping forces generated by the lateral deformation of the shaft. The lateral 

equations of motion in the y- and z-axes, in terms of the disk geometric center as shown in Figure 2 

are found to be 

 
2

C C Cmy cy ky m ecos t      (3) 
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2

C C Cmz cz kz m esin t     , (4) 

where c is the corresponding damping. 

The undamped free vibration analysis deals with the rotor vibration in the case of negligible 

unbalance eccentricity and damping. The equations of motion are 

 C Cmy ky 0   (5) 

 C Cmz kz 0  . (6) 

The above equations have the same undamped characteristic equation 

 
2ms k 0    (7) 

Solving the above equation it is obtain the following solution: 

 1,2 n

k
s i i

m
     , (8) 

where ωn is the undamped natural frequency of the single rotor with the massless shaft. The undamped 

critical speed of the system is defined as  

  cr 3

30 48EI
n rpm

mL



  (9) 

Because in the experimental determinations the sample has the mass of the shaft comparable to that 

of the disc, it will also take into account the mass of the shaft through the density ρ, the length L and 

the area of the section A. 

Adopting Euler Bernoulli classical theory of simple supported beam the equation of motion for a 

uniform shaft with a rotor disk (Figure 1) can be written as [9]: 

 
4 2 2

4 2 2

V(x, t) V(x, t) V(x, t)
EI A m (x L / 2) 0

x t t

  
    

  
  (10) 

where δ is Dirac function.  

Using Ritz method [10], a series approximate analytical solution of Eq. 10 is assumed to be: 

    
n

T

i i

i 1

V(x, t) (x)q(t) q


     (11) 

where Φi(x) are the mode shape functions assumed to satisfy geometric boundary conditions of the 

shaft, and qi(t) are the generalized coordinates. 

The total kinetic energy of shaft whit a rotor is given by: 

             

2 2L
T T

c 1 2

x L/20
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E A dx m q M M q q M q

2 t 2 t 2 2

    
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    
  (12) 

where the matrix [M1] and [M2] are: 

          
L

T T

1 2
x L/2

0

M A dx; M m


       
    (13) 

The total potential energy of the system is given by: 
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where the stiffness matrix [K] is: 

      
L 2 2

T

2 2

0

K EI dx
x x

 
  

    (15) 

It should be noted that the transverse displacement V (x, t) can take place both in the xoy plane and 

in the xoz plane. In the following, the two displacement functions can be written: 

 
n n

i i i i

i 1 i 1

Y(x, t) Y (x)q (t);Z(x, t) Z (x)q (t)
 

     (16) 

where both the Yi(x,t) and Zi(x,t) functions are admissible functions. The number n of the chosen 

admissible functions determines the number of eigenfrequencies and the eigenvectors.  

Applying the theorem of conservation of mechanical energy 

 
c pE E const    (17) 

and after derivation in respect to time, the differential equation that governs the movement of the 

system in matrix form is obtained: 

        M q K q 0  . (18) 

Assuming a modal solution  

     i tq e   , (19) 

yields the eigenvalue problem 

        2 M K 0      , (20) 

from which the characteristic equation, the approximate natural frequencies, eigenvectors and 

approximate eigenfunctions are obtained. 

Given that the first vibration mode of the rotor shaft system is interested, it is necessary to choose a 

single admissible function for determining the critical speed. Consequently, the two functions which 

approximate the displacements in oxy plane and oxz plane are chosen such: 

 
x

Y(x, t) Z(x, t) sin cos t
L


   , (21) 

where ω is the fundamental circular frequency and the function sin πx/L is admissible function which  

the geometric boundary condition are exactly satisfied for simple supported shaft. 

Applying this method to a shaft with a single rotor as in Figure 1, from the mechanical energy 

conservation theorem, for the admissible function given by equation (21), is obtained fundamental 

circular frequency 
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5

1234567890‘’“”

International Conference on Applied Sciences (ICAS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 294 (2018) 012035 doi:10.1088/1757-899X/294/1/012035

which corresponds to the critical bending speed 

 
 cr

30 30 EI
n

L AL 2m L
  
  

  (23) 

For the same rotor considering the shaft without mass, using the approximate analytical solution 

given by equation (21), the critical bending speed is 

 cr

30 30 EI
n

L 2mL
  


  (24) 

For a three-rotor shaft placed as in Figure 3, choosing the same admissible function as for a single 

rotor shaft, i.e. Φ(x) = sinπx/L, following the same procedure, the fundamental frequency of the 

bending vibrations is obtained 

 
  
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   




, (25) 

 

 

Figure 3. Three-rotor shaft 

which corresponds to the critical bending speed 

 
 cr
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  (26) 

3.  Numerical analysis 

In this paragraph are given basic steps of the numerical modal analysis simulation. The modal analysis 

is carried out on the steel simple supported shaft with single rotor and three-rotor simple supported 

shaft. The simple supported shaft is designed in the graphical environment of the ANSYS [11]. Mode 

shapes and natural frequencies are computed in programs ANSYS with numerical formulation of the 

direct solver including the block Lanczos method.  

In order to determine the critical speed of the disc is required measurements of the fundamental 

frequency in two planes: Oxy and Oxz. Mesh of the shaft and rotor is generated automatically by 

ANSYS, while is used the spatial element SOLID187. The element is defined by 10 nodes while each 

node has three degrees of freedom. The SOLID187 has a quadratic shifting behaviour and is suitable 

for modelling of the finite element irregular mesh. The maximum size of the element is 5 mm. The 

mesh is created of 3200 elements and of 22459 nodes. 

To validate the rotor shape modes of vibration, in correlation with experimental resonance 

frequencies test, it is necessary to do a modal analysis. For an n-degree of freedom system, by Finite 

Element Method the motion equation of sample can be expressed similarly as equation (18), where 
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{q} is the vector of the displacement, and [M] and [K] are mass, and stiffness matrices. For free 

vibration of the shaft and rotor, the characteristic equation is: 

    2 M K 0     (27) 

To solve eigenvalues problem, given by equation (14), the Block Lanczos method is use because it 

is efficient to extract of large number of modes in most models. It is used in complex models with 

mixture of solids/shells/beams etc. It offers an efficient extraction of modes in a frequency range. 

The first mode shapes of the single simple supported rotor shaft in Oxy plane and in Oxz plane are 

shown in Figure 4 and Figure 5. 

 

 

 

Figure 4. First bending mode in Oxy 

plane for single simple supported rotor 

shaft 

 Figure 5. First bending mode in Oxz plane for 

single simple supported rotor shaft 

The three-rotor simple supported shaft is design in the same graphical environment of the ANSYS 

with the same spatial element solid 187.The first mode shapes of the three-rotor simple supported shaft 

in Oxy plane and in Oxz plane are shown in Figure 6 and Figure 7. 

 

 

 

Figure 6. First bending mode in Oxy plane 

for three-rotor with simple supported shaft 

 Figure 7. First bending mode in Oxz plane 

for three-rotor with simple supported shaft 

4.  Experimental analysis 

The experimental stand for non-contact measurement of free vibrations of the sample having a rotor 

with simple supported shaft is shown in Figure 8, and it is composed by: the shaft with disk 1, which is 

the mechanical structure to be analyzed; impulsive mini hammer 2; brackets to support the sample 3; 

elastic threads for support of the structure in boundary conditions with the free ends 4; the acoustic 

sensor one condenser microphone 5, and the computer that has embedded and data acquisition board 

6. The same stand is also used for the sample having three-rotor and simple supported shaft, as in the 

Figure 10. This stand or its variants used especially in the case of simulation of free- free boundary 

conditions was designed and used for the papers: [12], [13]. 
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On the stands in Figures 8 and 9 vibration measurements were performed for two samples, for a 

single simple supported rotor shaft and for three-rotor with simple supported shaft. The vibroacoustic 

signal is picked up by a good quality condenser microphone. Then the signal is transmitted as an 

electrical voltage to a signal acquisition board, which is actually the sound card of the computer, and it 

is amplified by a microphone amplifier located on this board. Acquisition board is analog digital signal 

from the microphone, with the possibility of adjusting the sampling frequency. The signals were 

discretized with a sampling frequency of 44.1 kHz, thus having the possibility of spectral analysis, 

according to the Shannon theorem, up to a frequency of 22 kHz, i.e. in the audible spectrum. 

 

 

 

Figure 8. The experimental stand for single 

simple supported rotor shaft  

 Figure 9. The experimental stand for three-

rotor with simple supported shaft  

The discreet signals were purchased through the Professional CoolEdit 2 [14], software as files 

with the wav extension. The MATLAB [15] program was used for analysis of discreet signals stored 

in wap files. The Figure 10 shows the recorded signal from experimental sample of a single-rotor with 

simple supported shaft. For each sample, several signals were recorded for spectral analysis using Fast 

Fourier Transform (FFT). 

 

 

 

Figure 10. Signal in time domain for single 

simple supported rotor shaft  

 Figure 11. Signal in frequency domain for single 

simple supported rotor shaft  

The Figure 10 shows the recorded signal from the experimental sample, consisting of a single-rotor 

shaft, simply supported. The spectrum of the recorded signal is shown in the Figure 11. Manual 

excitation was done by impulsive mini hammer consisting of a metal sphere and a plastic handle. 
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To retain only the component corresponding to the fundamental frequency of the vibration signal, it 

was filtered through a band pass filter. 

Figure 12 shows the recorded signal from the experimental sample, consisting of a three-rotor 

shaft, simply supported. The spectrum of the recorded signal is shown in the Figure 13. 

 

 

 

Figure 12. Signal in time domain for three-

rotor simple supported shaft 

 Figure 13. Fourier Frequency Spectrum Signal 

for three-rotor simple supported shaft 

5.  Results and conclusions 

For experimental determinations of the critical speeds of a single rotor shaft by pulse excitation 

technique, the sample was made of a steel shaft having the length L=294 mm and the diameter d=20 

mm. The rotor is in the form of a disc and was made of the same material having a diameter D=130 

mm and a thickness h=10 mm. The material was stainless steel with Young’s modulus E=210 GPa, 

and density ρ=7850 kg/m3. The mass of the rotor-disc and of the shaft has been measured by a 

precision digital balance which is accurate to one-hundredth of a gram. Average after six weighing, for 

the disc was m=md=800.333g, and ms=ρAL=700.231 g, for the shaft. 

By making the ratio between equation (24) and equation (23), i.e. between the critical speed of the 

rotor in which the mass of the shaft is negligible with respect to the disc rotor, and the critical speed of 

the same rotor taking into account the mass of the shaft, it is ascertained that since the relative 

deviation of the two speeds, to be less than 1%, the ratio between the shaft mass and the disc mass 

must be less than 1/25. As can be seen from the mass measurement for the sample considered in the 

experiment, it does not answer to this requirement. 

Table 1. The fundamental frequencies and critical speeds of the single rotor shaft in two planes 

Type of 

analysis 

Fundamental 

frequency in Oxy 

plane [Hz] 

Critical speed in 

Oxy plane [rpm] 

Fundamental frequency in 

Oxz plane [Hz] 

Critical speed in 

Oxz plane [rpm] 

Analytical 

analysis. Shaft 

massless 712.32 42739,2 712.32 42739,2 

Analytical 

analysis. Shaft 

with mass 594.12 35647,2 594,12 35647,2 

Numerical 

analysis 596,23 35773,8 596,66 35799,6 

Experimental 

analysis 605,17 36310,2 607,03 36421,8 
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For experimental determinations of the critical speeds of a thre-rotor shaft by pulse excitation 

technique, the sample was made of a steel shaft having the same dimensions as in the first experiment. 

The midle rotor is noted here with m2 and it is also the same like in first experiment. The mass of the 

rotor-disc and of the shaft has been measured by a precision digital balance which is accurate to one-

hundredth of a gram. Average after six weighing, for the disc was m=md=800.333g, and 

ms=ρAL=700.231 g, for the shaft. 

Table 2. The fundamental frequencies and critical speeds of the three-rotor shaft in two planes 

Type of 

analysis 

Foundamental 

frequency in Oxy 

plane [Hz] 

Critical speed in 

Oxy plane [rpm] 

Foundamental frequency 

in Oxz plane [Hz] 

Critical speed in 

Oxz plane [rpm] 

Analytical 

analysis. Shaft 

massless 660,34 3962,04 660,34 3962,04 

Aalytical 

analysis.Shaft 

with mass 574,21 34454,6 574,21 34454,6 

Numerical 

analysis 577,77 34666,2 578,27 34696,2 

Experimental 

analysis 581,17 34870,2 583,34 35000,4 

In conclusion, comparing the results given in Table 1 and Table 2 it can be said that the 

experimental method validates numerically or analytically results. The negligence of the shaft mass, 

when it is comparable to the rotor mass, causes large deviations in determining the critical speeds. 
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