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Abstract. Hydrodynamic effect polishing (HEP), in which the material removal relies on the 

chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize 

automatic level smooth surface without surface/subsurface damage. The machinability of 

different types of optical material (such as monocrystalline silicon and crystalline quartz, 

amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece 

surfaces before and after being polished by HEP was observed by atomic force microscopy. 

The experimental results show the surface roughness of monocrystalline silicon and quartz, 

amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to 

Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and 

bumpy structures have been removed clearly. However the surface roughness has increased 

from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By 

comparison, we can conclude that excellent performance is shown when HEP is applied on the 

optical material structure with a single monocrystalline or amorphous component. However the 

ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials 

such as Zerodur glass. The micro unevenness increases gradually along with polishing process 

due to the different material removal of the monocrystalline and amorphous component. 

1.  Introduction 

The development of modern optical technology has put high requirement on the optical component 

surface quality. Taking the extreme ultraviolet lithography (EUVL) for example, the mirror surface 

roughness should be fabricated at atomic level [1-2]. It also requires that there is no defects and 

crystalline destroy on the processed surface. Although the surface roughness can be restricted at a 

relative low level by using the ultra-smooth polishing method with the material removal in plastic 

mode, surface/subsurface damage and residual stress can’t be avoided. Therefore the traditional 

ultrasmooth polishing method can’t meet the demand of ultrasmooth surface for modern optical 

system. How to fabricate the ultra-smooth and defect-free surface has become a hot research point in 

ultra-precision machining area. Different optical systems need different optical components. While 

different optical material is composed of different unit. How to obtain an ultrasmooth surface of 

different optical component is a difficulty problem in the polishing area. 

Elastic emission machining, an ultra-smooth polishing method presented by Mori [3, 4], has been 

considered as the highest precise polishing method so far. The good machinability on semiconductor 

materials such as silicon and silicon carbide has been validated through experiment research. 
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Hydrodynamic effect polishing (HEP), a non-contact polishing method, was present based on the 

theory of float polishing [5-7] and elastic emission machining. The atomic-level material removal rate 

of HEP is realized by the chemisorption between nanoparticle and workpiece. Defect-free surface with 

surface roughness at atomic-level can be obtained [8-11]. As the chemisorption relies on the 

workpiece material construction, which types of material can be polished by HEP is still unknown. Up 

to now the reports about the machinability for different types of optical materials are very limited. In 

this paper, the machinability of different types of material was explored experimentally, and the 

structure characteristic of machinability material by HEP has been summarized. 

2.  Experiment procedure 

For the sake of the exploration becoming universal and pertinent, four typical workpiece made up by 

different optical materials were selected as experimental sample. The four different types of optical 

materials were silicon, monocrystalline silicon and crystalline quartz, amorphous silicate glass and 

Zerodur glass. The silicon and quartz are crystalline material while the silicate glass is amorphous 

material. Zerodur glass is composite material which is composed by crystalline and amorphous 

material. Therefore three different types of construction are involved. The optimal process parameters 

are set for polishing experiment. The polishing slurry is a mixture of deionized water, some dispersant 

and silicon-oxide nanoparticles with average diameter of 20nm. The uniform raster scan with the scan 

step size of 10μm was selected as the polishing path. After HEP process, all the samples were rinsed 

with the deionized water under irradiation with a 1.3M supersonic wave to remove the adsorbed 

nanoparticle on the surface. At last, the surface before and after polishing was observed by atomic 

force microscopy (AFM, Bruker’s Dimension Icon) with scanning area of 10μm×10μm at a resolution 

of 512 × 512 pixels. By contrast of surface morphology and surface roughness before and after HEP, 

the machinability can be concluded. 

A monocrystalline silicon sample with the thickness of 3mm was selected as the sample, and the 

polishing area was 15mm×8mm. As a treatment before HEP, the sample was dipped into hydrofluoric 

acid (HF) with concentration of 5% for 30min to remove the oxide layer. Then the sample was rinsed 

by deionized water for 1 minute to remove the residual solution. Then HEP was used for polishing the 

sample with the removal depth about 140nm. 

A circular crystalline quartz (Beijing Brightcrystals Techonlogy INC.) with crystal surface 

direction of (1 0 0) was selected as the sample. The diameter of sample is 50mm, and the size of 

5mm×5mm on the sample surface was choose as the polishing area with removal depth of 200nm for 

the HEP treatment process. 

As the amorphous silicate was mainly consisted of silica, we chose the silicate glass as the 

polishing sample representing the typical amorphous silicate material. The machinability of silicate 

glass by HEP was then conducted. The size of 5mm×5mm was chosen as the process area, and the 

removal depth is about 160nm. 

The Zerodur glass was produced by Schottag Corporation in German. The diameter of sample is 

50mm, and the size of 5mm×5mm on the sample surface was choose as the polishing area with 

removal depth of 160nm for the HEP treatment process. 

3.  Results and discussion 

3.1.  Monocrystalline Silicon 

Figure 1 shows the AFM images of 10μm×10μm of the silicon sample surface before and after HEP 

process. There are lots of un-uniform plastic pits and bumpy structure on the initial surface, as shown 

in figure 1(a). After removal depth of 140nm, the initial defects have been removed clearly, and the 

surface looks very smooth, as shown in figure 1(b). Meanwhile surface rms roughness has decreased 

from 0.737nm to 0.175nm. By comparing with the section profiles before and after HEP process, the 

profile fluctuation has been greatly depressed when the surface was polished by HEP. The surface 

height was almost at the same level with the micro-unevenness within ±0.3nm. By comparison we can 
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see HEP has good smooth ability on the monocrystalline silicon material surface. The silicon material 

is composed of uniform silicon unit cell. Each removal rate of the unit cell is the same. Experiment 

results also demonstrate the machinability of silicon by HEP is feasible. 

 
(a) Before polishing process 

 
(b) After polishing process 

Figure 1. AFM images of silicon surface before and after polishing process. 

3.2.  Crystalline quartz 

Figure 2 shows the AFM images of crystalline quartz before and after HEP process. There are many 

micro plastic scratches on the initial surface, as shown in figure 2(b). The initial surface profile 

fluctuation was restricted within ±1nm, and the surface rms roughness was 0.490nm. When the sample 

was polished by HEP, all the plastic scratches and bumpy structures have been removed clearly. The 

processed surface looks much smooth, and the profile fluctuation has been depressed within ±0.5nm, 

as shown in figure 2(b). The surface rms roughness has decreased to 0.187nm. It demonstrates that the 

feasibility of HEP machinability of crystalline quartz is very effective. For crystalline quartz glass is 

composed of uniform crystalline unit cell, each unit cell has the same removal rate. 
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(a) Before polishing process 

 
(b) After polishing process 

Figure 2. AFM images of quartz surface before and after polishing process. 

3.3.  Silicate glass 

The AFM observation of processed surface of silica glass is shown in figure 3. The mechanical 

damages such as the scratches and cracks on the initial surface have been removed clearly when the 

surface was processed by HEP. Meanwhile the degree of micro-unevenness has greatly depressed, and 

the surface looks much smooth with the surface rms roughness decreasing from 0.469nm to 0.157nm. 

It demonstrates that HEP has great effect on removal of mechanical damages and improvement of the 

surface quality. As the silicate glass has the similar compositions with the silica glass, we can 

conclude HEP has good smooth ability on the silicate glass. It also means the machinability of 

amorphous structure is very well. Silicate glass is amorphous material, and the material of each 

amorphous phase is the same. 

 
(a) Before polishing process 
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(b) After polishing process 

Figure 3. AFM observations of silica glass surface before and after polishing process. 

3.4.  Zerodur glass 

Figure 4 shows the AFM images of the Zerodur glass before and after HEP process. Although the 

scratches on the initial surface have been removed, the profile fluctuation is not depressed but 

increased at some extent. From the value of the surface roughness, we can see the surface rms 

roughness has increased from 0.213nm to 0.321nm. As the wheel was manufactured by the single 

point diamond turning, the turning marks on the wheel has greatly duplicated on the processed surface 

[6]. 

 
(a) Before polishing process 

 
(b) After polishing process 

Figure 4. AFM observations of Zerodur glass surface before and after polishing process. 

The Zerodur glass is a composite phase structure made up of crystalline and amorphous phase 

material. The crystalline phase, which is formed by micro crystalline particles, is uniformly distributed 

in the amorphous structure, as shown in figure 5. Because of the difference of manufacturing process, 
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the size of the crystalline particle is different but normally about 50nm [9]. Crystalline phase is 

negative thermal expansion material, while the amorphous phase is positive thermal expansion 

material. By controlling the components of these two materials at a proper ratio, the Zerodur glass is 

zero thermal expansion. That is why it has good thermal stability and has wide application in modern 

optical system such as EUVL and spatial telescope mirrors and so on. 

 

Figure 5. Structure mode of Zerodur glass. 

As the different structure of crystalline and amorphous phase, the average surface atom bonding 

energy is incongruent. So the material removal rate of these two phases is different even if the process 

is at the same condition. That is mean the material removal rate of one phase is higher than that of the 

other. Therefore the surface will become coarse and the profile fluctuation will increase as the HEP 

process progresses. That is why the bumpy structure on processed surface and the surface roughness 

increased, as show in figure 4. It demonstrates that HEP process is not suitable for polishing the 

composite phase structure such as Zerodur glass. From the above analysis we can know the 

machinability of the silicon, quartz and silica is very well. Although they have different structures, 

they have the same characteristic that is they are all consisted of (crystalline or amorphous phase). 

Thereby if there is a post-treatment method that can change the thin surface layer on Zerodur glass 

into a single phase, then ultra-smooth fabrication can be realized by HEP process. One method is 

electron beam irradiation technology. It is reported that Mori [12] has successfully changed the 

crystalline structure on Zerodur glass into amorphous structure by electron beam irradiation 

technology, as shown in figure 6(a). Another way is adding technology that is a thin amorphous phase 

film is coated on the Zerodur glass, as shown in figure 6(b). Liao ea tl. [13] has obtained a ultra-

smooth surface by ion beam figuring when the Zerodur glass surface was coated a thin silicon or silica 

film. Therefore, the ultra-smooth surface can be polished when the surface has been changed into a 

single phase. 

    
(a) Electron beam irradiation technology           (b) Adding technology 

Figure 6. Surface post-treatment technology for Zerodur glass. 

4.  Conclusions 

The HEP machinability of different types of optical material was investigated experimentally in this 

paper. It demonstrated that HEP has good smooth ability on single phase structure such as 

monocrystalline silicon, crystalline quartz and amorphous silica glass. The surface defects on these 

materials can be effectively removed and the surface roughness can be reached at atomic level. As the 
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material removal rate of different phase is different, the HEP can’t be directly applied on the 

composite phase structure material such as Zerodur glass. However, ultra-smooth surface can be 

obtained when the surface was changed into a single phase. 
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