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Abstract. The Raman spectroscopy method established that subsequent treatment with ion 
ions leads to a change in the microstructure of coatings based on carbon and metals. It is 
established that the structure change is determined by the changes occurring at the interface 
and depends on the sp3 → sp2 phase transition due to the appearance of local thermal peaks at 
the end of tracks of nitrogen ions implanted in the coating volume. It is shown that the 
microhardness of metal-carbon coatings (ɑ-C: Cu, ɑ-C: Ti, ɑ-C:Al) increases after ion-plasma 
treatment, which is determined by the formation of solid interstitial phases based on CNx and 
metal carbonitrides. 

1. Introduction 
Amorphous carbon coatings (ɑ-C), produced by various methods, have a unique combination of 
electrical, optical, thermal and mechanical properties. At the same time, they are characterized by a 
number of defects, including low temperature stability, high internal stresses, and low adhesion to 
dielectric substrates [1]. The most effective method of enhancing the properties of ɑ-C is their doping 
with nitrogen and various metals, which have different chemical activity with respect to carbon [2‒4]. 
For the production and usage of such coatings it is very important to control the properties of the 
produced nanocomposite systems, in which the chemical interaction processes can lead to the 
formation of carbide and nitride phases in the carbon matrix. The choice of individual components and 
their concentration in the coating layer, as well as the effect of the ion-plasma treatment method and 
regimes on the carbon structure, largely determine its basic performance characteristics. At ionic 
processing of composite carbon coatings, selective etching of a certain coating component occurs, the 
concentration and character of distribution in the volume of alloying elements change. With such 
treatment, the processes of chemical interaction during heating, radiation modification of components 
become more complex [1, 2]. An increase in the operational properties of metal-carbon coatings is 
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possible with a directed change in the structure of the layer due to a change in the modes and 
parameters of doping or ion treatment during their formation [1‒4]. 

The matter of topical interest is to select the composition of the individual components of the 
coating and develop technological recommendations for directed changes in the structure and 
mechanical properties of metal-carbon coatings formed under the conditions of ions assisting of 
different nature and energies with subsequent technological ion treatment. 

The effect of the subsequent technological ion-plasma treatment on the structure and microhardness 
of composite metal-carbon coatings formed by simultaneous deposition of carbon from a pulsed 
cathode plasma and ions / metal atoms (Cu, Ti, Al) generated by magnetron sputtering is under study. 

2. Models and research methods of production and properties 
Carbon coatings were formed on a silicon substrate by simultaneously depositing carbon from the 
plasma source of a pulsed cathode-arc discharge with a graphite cathode and metal from the flow of 
the generated magnetron sputtering system. As alloying elements, metals possessing different 
chemical activity with respect to carbon and nitrogen (Cu, Ti, Al) were used. Subsequent processing of 
the produced coatings with nitrogen ions (ion energy up to 1.5 keV) promotes phase transitions sp3 → 
sp2 and the formation of metal nitrides and chemical compounds of nitrogen and carbon CNx in the 
near-surface layers. The thickness of the coatings was 270‒300 nm, the metal concentration was of 
2.5 at. %, the microhardness varied from 10 to 12 GPa, depending on the nature of the alloying metal. 

The phase composition of the carbon coatings was determined by analyzing the Raman spectra 
obtained with a Senterra spectrometer with an excitation wavelength of 532 nm and power of 10 mW. 
The obtained spectra were decomposed into two Gaussians (D- and G-peaks). 

Raman spectroscopy is one of the most widely used methods of non-destructive quality control of 
diamond [1], graphite, carbon nanotubes and carbon-based coatings [2, 4‒6]. 

There are three main reasons for the change in the Raman spectra of ɑ-C coatings [7]: 
‒ conjugated π-bonds increase the polarizability range; 
‒ G and D modes are conjugated; 
‒ the phenomenon of double resonance for the D mode [8]. 
A large range of polarizability substantially increases the intensity of the G and D modes. 

Particularly, the intensity of the D mode increases, which is caused by the respiratory mode. In the 
graphite layer there is an amplifying interference of the eigenvectors of each six-atom ring and 
weakening interference for rings of other orders. 

All three factors increase the intensity of respiratory modes and suppress the modes of other 
symmetries. In [9] it is noted that the ratio ID /IG is inversely proportional to the size of graphite La 
grains:  

ID/IG=c(λ)/La,     (1) 
 

where ID and IG are the intensities of the corresponding peaks, c (λ) is the proportionality 
coefficient that depends on the wavelength of exciting radiation, and La is the grain size of graphite 
(nm). This means that the ratio ID/IG is proportional to the number of rings at the grain boundary. 
Obviously, this La can not tend to zero. For ta-C coatings, it was found that for La is less than 2 nm, the 
ratio decreases according to the expression (2) [10]: 

 

ID/IG=c(λ)·La
2     (2) 

 

Since the G-peak of the mode exists due to sp2-hybridized atoms, and the D-peak is only due to the 
rings, ID/IG decreases with a decrease in the number of carbon rings and an increase in the proportion 
of carbon chains. 

Figure 1 shows the causes of the displacement of the G and D peaks, as well as the changes in their 
relative intensities. 

In [6, 11], a three-stage model for increasing the degree of disorder in carbon is presented: 
‒ ideal graphite passes into a nanocrystalline; 
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‒ nanocrystalline graphite passes into a-C form; 
‒ sp2 a-C goes to sp3 ta-C. 
Stage 1 corresponds to a decrease in the grain size of an ordered graphite layer, but with the 

preservation of aromatic rings. The G-peak shifts to 1600 cm-1. Mode D is banned for an ideal layer of 
graphite, but the disorder of bonds and the reduction in grain size leads to an increase in its intensity. It 
is worth noting that the width of the D- and G-peaks is a characteristic of the disorder degree. 

Stage 2 corresponds to the topological disorder of graphite, the decrease of aromatic bonds, but 
with the preservation of the perfect sp2 matrix. The G-peak shifts to 1520 cm-1.  

 

 
Figure 1. The schematic diagram of the change in the Raman spectra of carbon coatings [7].  

 
At stage 3, the content of sp3 increases to 100 %. This fact changes the sp2-configuration from rings 

to short chains [6]. The length of bonds of chains (olefins) is shorter than that of carbon rings, since 
their oscillation frequencies are higher. The G-peak shifts to 1580‒1600 cm-1, its intensity increases, 
and the D-peak intensity tends to zero. 

An increase in the ID/IG ratio indicates a decrease in the size of sp2 clusters, narrowing of the width 
of the G peak indicates an increase in the order degree, its shift to the region of large wavenumbers 
can be explained by an increase in the level of internal stresses, and a shift to the region of smaller 
wave numbers by a decrease in the content and disordering of sp3-bonds. 

To measure the microhardness according to Knupp, the microfirms AFFRI DM-8 were used during 
experiments. The evaluation of microhardness is based on measuring the length of the diagonal of the 
reprint produced by indenting a diamond pyramid with a certain load into the material under study. 
When measuring the microhardness according to Knupp, a pyramid with a square base is used, in 
which the angle between the opposite lateral faces was 172° 30´. 

The sizes of prints were determined with the help of an optical microscope with interchangeable 
lenses providing an increase in 400x and 100x. The load value F is 245 mN; the duration of indentation 
of the pyramid during measurements by both methods was the same ‒ 10 s. Since the thickness of the 
coatings analyzed in the research does not exceed 200 nm, the measured microhardness of the samples 
is a superposition of the hardness of the "coating-substrate" system and was determined according to 
the expression (1): 

Hk = 14,23∙F/L2,       (3) 
where L is the diagonal length and F is the load. 
 

3. The results and their analysis 
Figure 2a–e shows the results of statistical treatment of the data of Raman spectroscopy of metal-
carbon coatings (ɑ-C: Cu, ɑ-C: Ti, ɑ-C: Al) after ion-plasma treatment. 
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The analysis of Raman spectroscopy shows that the subsequent ion-plasma treatment of metal-
carbon coatings leads to an increase in the ID/IG ratio, which indicates a decrease in the size of sp2 
clusters. In addition, a decrease in the width of the G peak is observed, which is explained by an 
increase in the degree of ordering of the sp2 clusters.  

 

Model histograms:    ‒ before and    ‒ after ion-plasma treatment 
 

Figure 2. Histograms of values of position (a, c), width (b, d), intensity of absorption peaks (e) of 
Raman spectra and microhardness (f) of poduced metal-carbon coatings (ɑ-C: Cu, ɑ-C: Ti , ɑ-C: Al) 

after their subsequent technological ion-plasma treatment. 
 

The position of the G peak, in the case of ɑ-C: Al and ɑ-C: Ti coatings, practically does not change. 
Its shift to the region of large wave peaks after ion-plasma treatment of copper-doped coatings can be 
caused by an increase in the level of internal stresses due to the formation of a larger number of 
crystalline inclusions of N-Csp2, in contrast to titanium and aluminum. Since Co-C coatings initially, 
even before ion-plasma treatment, are characterized by a high content of sp2 phase, while sp2-
hybridized carbon atoms in ɑ-C: Al and ɑ-C: Ti coatings are bound in the form of metal carbides. In 
addition, the level of internal stresses after ion-plasma treatment in ɑ-C: Cu coatings can increase as a 
result of the formation of Cu3N, however, the formation of such compounds by vacuum methods is 

 
a) 

 
b) 

 
c) 

 
d) 

  
e) f) 
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unlikely. 
The increase in the width of the D-peak and its shift to the region of lower wave numbers may 

indicate disordering and a decrease in the number of sp3-clusters. Such changes can be caused by the 
destruction of the grain boundaries and sp3→sp2 phase transition, due to the formation of local thermal 
peaks at the end of tracks of nitrogen ions implanted in the coating volume during ion-plasma 
treatment. 

The results of measuring the microhardness of samples of metal-carbon coatings before and after 
ion-plasma treatment are introduced in Figure 2f, where it is shown that the microhardness of metal-
carbon coatings (ɑ-C: Cu, ɑ-C: Ti, ɑ-C: Al) increases after ion-plasma treatment. It can be assumed 
that this increase in microhardness is mainly due to the formation of solid interstitial phases based on 
CNx and metal nitrides. It should be noted that the formation of Cu3N as a result of ion-plasma 
treatment is less likely than AlN and TiN. 

The previously established fact of decreasing the size of sp2 clusters due because of ion-plasma 
treatment also makes it possible to explain the change in microhardness from the point of view of the 
Hall-Petch law. The relatively small (0.5‒0.7 GPa) increase in microhardness can be explained by the 
formation of CNx phases in near-surface layers, the thickness of which is much smaller than the depth 
of penetration of the indenter. 

4. Conclusion 
Raman spectroscopy showed that the subsequent ion-plasma treatment of metal-carbon coatings leads 
to the increase in the ratio of the ID/IG absorption peaks of their Raman spectra, which indicates the 
decrease in the size of sp2 clusters. At the same time, the increase in the width of the D-peak and its 
shift to the region of lower wave numbers may indicate disordering and the decrease in the number of 
sp3-clusters. Such changes can be caused by the destruction of the grain boundaries and the sp3→sp2 
phase transition due to the formation of local thermal peaks at the end of tracks of nitrogen ions 
implanted in the coating volume during ion-plasma treatment. It is shown that the microhardness of 
metal-carbon coatings (ɑ-C:Сu, ɑ-C:Ti, ɑ-C:Al) increases after ion-plasma treatment, which is 
possible due to the formation of solid interstitial phases based on CNx and metal nitrides. 
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