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Abstract. This paper studies the method of simultaneous measurement of oxygen, hydrogen 
and water impurities that is based on combining moisture coulometric and solid electrolyte. 
The basic reduced measurement error for the molecular impurity in inert gases for 
measurements ranging from 0 to 5…50 and …500 mln-1 of oxygen totals 6, 3.8 and 2.8 % 
respectively. Similarly, measurement error totals respectively 8, 3 and 3.8 % for hydrogen, 
and respectively 6, 3 and 3 % for water molecules. 

1. Introduction
Production of modern hardware components for micro- and nanoelectronics involves a wide range of 
high-efficiency electron-ion manufacturing processes, such as molecular beam epitaxy, ion 
implantation doping, laser annealing, plasma and ion beam etching, and applying vacuum coatings. 
These processes require particular purity of the used operating inert gas environments [1–4]. In this 
context it is extremely important to control such molecular components of operating gas impurities as 
humidity, oxygen and hydrogen to ensure the quality of the produced microelectronic devices. There 
are several methods of measuring the volume ration of oxygen and hydrogen in inert gases, e.g. using 
coulometric electrolysis and solid electrolyte cells [5–7]. A practical way to measure partial oxygen 
pressure in gases at high temperatures (above 600 °С) is by using a solid electrolyte cell [6, 7] 
designed as a tube made of solid electrolyte based on zirconium dioxide stabilized with oxides of 
calcium or yttrium. The most efficient way is to apply platinum electrodes in the form of spirals or 
pastes onto the external and internal surfaces of the tube [7]. Continuous simultaneous measurement 
of water, oxygen and hydrogen content is achieved by placing in the flow circuit of the studied gas a 
set of active electrolysis cells that simultaneously register the concentration of each impurity 
component.  

2. Coulometric electrolysis cell
If this method is applied, the humidity is measured using a coulometric cell based on phosphoric 
anhydride film continuously absorbing moisture from a precisely regulated flow of the analyzed gas, 
with simultaneous electrolytic decomposition of the absorbed moisture into oxygen and hydrogen that 
are carried away by the flow of the analyzed gas. The amount of electricity spent on the electrolysis of 
the absorbed moisture (electrolysis current) indicates the concentration of moisture in the gas. 



2

1234567890‘’“”

International Conference on Modern Technologies for Non-Destructive Testing IOP Publishing

IOP Conf. Series: Materials Science and Engineering 289 (2018) 012027 doi:10.1088/1757-899X/289/1/012027

In accordance with Faraday’s law, the moisture content is calculated as: 
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where OHC
2

 – moisture content, kg/m3; I – electrolysis current, А; OHМ
2

 – water molar mass, 
kg/mole; Q – gas flow through the coulometric cell, m3/sec; m – number of electron charges needed 
to decompose one water molecule; F – Faraday constant, C/mole. 

3. Coulometric solid electrolyte cell 
Oxygen can be measured with coulometric solid electrolyte cells (CSEC) that use direct current 
electrodes [8, 9]. CSEC is designed as a test tube made of high-temperature ceramics based on 
zirconium dioxide stabilized with yttrium dioxide that has selective oxygen-ionic conductivity. The 
cell has external and internal electrodes made of finely dispersed platinum [7]. Externally the cell is 
washed with atmospheric air due to the natural convection, and the analyzed gas is passed through the 
internal cavity of the cell. CSEC electrodes are powered (with specific polarity) from a direct current 
power source, under the effect of which oxygen is transferred through the solid electrolyte from the 
analyzed gas into the atmosphere. 

If the analyzed gas flow is constant, the current through the CSEC can be used to measure the 
oxygen concentration in the environment (

2OC ), that according to Faraday’s law is calculated as [7]:  
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where 
2OC  – oxygen concentration, kg/m3; I – current through the solid electrolyte, A;  

2OM  – oxygen molar mass, kg/mole; Q – gas flow through CSEC, m3/sec; n – number of electron 
charges in the ionized oxygen molecule. 

Physical and chemical properties of the solid electrolyte make it possible to use CSEC also for 
measuring hydrogen content in gases. The measurement is performed by means of electrolytic 
transfer of the amount of oxygen needed for hydrogen titration through the cell into the flow of the 
analyzed gas that contains hydrogen. In order to feed the titrant (oxygen) into the flow of the analyzed 
gas voltage is applied to the CSEC electrodes with polarity opposite to that of oxygen measurement. 
The signal indicating that the titration process is over is the steady transfer current and a sharp change 
of the cell electromotive force (EMF). EMF dependence on the titrant amount is typically for the 
titration curve characterized by the sharp voltage surge close to the equivalence point, i.e. the point in 
which the composition of the reactants corresponds with the stoichiometric proportion of the reaction 
products. At the moment of crossing the equivalence point the cell’s EMF is changed by hundreds of 
millivolts. This not only indicates the end of the titration, but also makes it possible to use the cell in 
the automatic self-titration mode. 

Figure 1 shows the CSEC flow chart for operation in the automatic self-titration mode.  
CSEC consists of two chambers 1 and 2 divided by the solid electrolyte 3. Electrodes 4 are applied 

to the surface of the solid electrolyte. The electrodes are connected to the direct current source 5 via a 
current meter (milliammeter) 6. Chambers 1 and 2 correspondingly have an inlet and an outlet for the 
analyzed and the reference gas. The temperature of the cell is provided by an external electric heater 
and is sustained at a specified level by a temperature regulator. 

It is known that in the stable conditions the cell’s EMF depends on the oxygen partial pressure in 
chambers 1, 2, and is calculated by the Nernst formula [10]: 
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where E – EMF of the cell, В; R = 8,314, J/mole-1·К-1– molar gas constant; T – absolute temperature, 
K; n – coefficient; F = 96484, A·c·mole-1 – quantity of electricity needed for the electrochemical 
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transfer of one mole of oxygen; 
22

, OO PP′  – partial oxygen pressure in the reference and analyzed 
environments respectively, Pa. 

 

 
 

Figure 1. Coulometric solid electrolyte cell.  
 

If the voltage of the direct current power supply is set to compensate the cell’s EMF, the electrical 
equilibrium of the cell will not be changed. If some amount of hydrogen is put into the working 
chamber 1, it will react with oxygen and reduce the partial oxygen pressure and shift the equilibrium 
of the electrochemical reaction. The difference in the cell’s EMF and the voltage of the direct current 
power supply will result in electric current in the external electric circuit, and oxygen will be 
transited from the reference environment into the working chamber through the solid electrolyte. 
When the ratio of the oxygen partial pressures in both chambers returns to the previous value, the 
system will return to equilibrium. The speed of equilibration is defined by the diffusion rate in the 
gas environment, the chemical reaction rate, the electric circuit resistance, and electrode polarization. 
Increase in cell’s temperature, usage of low-polarizable electrodes and a power source with low 
internal resistance can significantly speed up the equilibration process. 

4. Measuring method theory 
In order to evaluate the dependence of hydrogen measurement error on the cell’s operating conditions 
in the self-titration mode let’s assume that all processes are reversible except for the process of mass-
transfer through the solid electrolyte. Therefore, at any given moment the following Equation is true: 

2

2ln
O

O

P
P

nF
RTrIU

′
=⋅+ ,        (4) 

where U – voltage of the direct current power supply, V; r – ohmic resistance of the solid electrolyte, 
Om. 

If the inert gas with unknown hydrogen content is constantly passed through the working chamber, 
and the reference gas is characterized by constant oxygen partial pressure (i.e. atmospheric air), a 
certain electric current will be formed in the cell’s electric circuit. According to the Faraday’s law, 
this current will transfer oxygen from the reference environment into the working chamber. The 
relative amount of oxygen 

2О
G  that is transferred by the current per one volume of the analyzed gas 

will be calculated as follows: 
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where Vm – molar volume, m3/mole; Э – oxygen electrochemical equivalent, kg/C. 
Oxygen partial pressure in the cell’s working chamber will be calculated according to equation (4). 

On the other hand the partial pressures of the mixture components in the cell can be calculated in 
accordance with the reversible reaction: 

OHOH 222 2
1 →

←+      (6) 

The reversible reaction proceeds in the working chamber taking into account the equilibrium 
constant Кр of this reaction: 
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Partial pressure of the reacting components (with the total pressure of one) relates to the hydrogen 
concentration 

2Н
С  in the original analyzed as: 
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Partial pressure of the reacting components relates to the relative amount of oxygen transferred 
through the solid electrolyte according to the Equation: 
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Simultaneous solution of the Equations (5), (7), (8) и (9) can be recorded as: 
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Equation (10) shows that the amount of oxygen transferred through the solid electrolyte per 
volume of the analyzed gas is stoichiometrically related in terms of reaction (6) to the amount of 
hydrogen in the analyzed gas with the inaccuracy of δ. 

After reducing (11) provided that 11
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Simultaneous solution of the Equations (4), (10) and (12) give the following result: 
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Analysis of the Equation (13) shows that at certain conditions (gas flow Q, temperature Т, ohmic 
resistance of the solid electrolyte r), it is possible to find such voltage U, when inaccuracy δ is 
changed relatively little within a wide range of measured concentrations. Calculations show that 
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under realistic conditions δ does not exceed 0.2 % within the range of measured concentrations from 
1 to 500 mln-1. This inaccuracy is significantly lower than inaccuracies connected with measuring and 
maintaining the flow of the analyzed inert gas. If inaccuracy δ is neglected, Equations (5) and (10) 
can be used to derive the following Equation for establishing the hydrogen concentration: 

QMF
ЭIVmС

O
Н ⋅⋅

⋅⋅
=

2

2

2
.      (14) 

If the analyzed gas flow Q is constant, the hydrogen concentration can be calculated using the 
measured cell current. The described CSEC allows to measure the oxygen and hydrogen 
concentration with certain accuracy is the analyzed gas contains only one of these two components. If 
they are contained in the gas in commeasurable quantities, they react with each other and 
consequently do not participate in the electrode reaction, which makes measurements indeterminate. 
This drawback is increasingly important taking into account that the inert gases used in industrial and 
laboratory practice usually contain both oxygen and hydrogen. 

5. Experimental test 
In order to implement the instrumental gas analysis system it is possible to use the principle of 
simultaneous measurement of oxygen and hydrogen microconcentrations that is demonstrated in 
Figure 2. 

 

 
 

Figure 2. Flow chart of measuring oxygen, hydrogen and moisture microconcentrations  
in inert gas environment. 

 
In this design the analyzed gas with constant flow Q1 is successively passed through filter F, 

dehumidifier DH, coulometric cell CEC1, reactor R, coulometric cell CEC3 and further on through 
CSEC and reducer RD3 is dumped into the atmosphere. Introduction of the dehumidifier DH into the 
design is conditioned by the need to reduce the error of measuring oxygen and hydrogen 
microconcentations that occurs because of moisture presence in the gas. Phosphorous pentoxide is 
used as moisture absorber in the humidifier. In order to control the quality of moisture absorption in 
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the humidifier and simultaneously to correct the results of measuring residue moisture it is reasonable 
to introduce a coulometric cell CEC1 into the design. 

The amount of moisture generated in the reactor R is measured with the coulometric cell CEC3. 
All cells including the CSEC are galvanically connected with each other, are powered by separate 
power sources PS1, PS 2, PS3 and are connected to the measurement circuit represented by diodes 
VD1, VD2 and current meter CM4, CM5 in such a way to ensure algebraic addition of the cells’ 
signals to for the required functional changes of the latter. Basically, the measurement design is a 
bridge with diagonal connection of CSEC. If the analyzed gas contains excessive hydrogen (scenario 

22
5,0 OH CС > ), CSEC generates EMF that exceeds the compensating voltage from power source 

PS4. In this case CSEC circuit generates the oxygen ions transfer current 
2OI ′  that is proportional to 

the value 
2HC∆ . At the same time current flows through the current meter CM4; this current equals 

the sum of oxygen ions transfer current 
2OI ′  and the current of moisture electrolysis of the 

coulometric cell CSEC OHI
2
′ . Simultaneously current flows through the current meter CM5; this 

current equals the difference of currents of CEC1 and CSEC (respectively OHI
2
′  и OHI

2
). 

In another case, when the analyzed gas contains excessive oxygen, (scenario 
22

2 HO CС > ) CSEC 
generates EMF that is lower than the the compensating voltage. In this case the oxygen ions transfer 
current 

2OI  that is proportional to the value 
2OC∆  will change its direction and will be one of the 

components of the current that flows through the current meter CM5. 
Thus, the microconcentrations of oxygen and hydrogen in the analyzed gas can be analytically 

measured according to the following eq uations: 
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where 
2О

В  – oxygen microconcentration in the analyzed gas, mln-1; 
2Н

В  – hydrogen 

microconcentration in the analyzed gas, mln-1; 
2О

I  – oxygen ions transfer current if the analyzed gas 

contains excessive oxygen, µA; 
2О

I ′  – oxygen ions transfer current if the analyzed gas contains 

excessive hydrogen, µA; OHI
2

 and OHI
2
′  – currents of moisture electrolysis in the coulometric cells 

installed in the gas flow beyond respectively reactor and dehumidifier, µA; t – atmosphere air 
temperature, °С; Q1 – analyzed gas flow in the oxygen/hydrogen measurement channel (for 
measurement conditions), cm3/min; Р – atmosphere pressure, kPa; q – coefficient determined by the 

choice of measurement units, totals 2,582 
K
kPacmm

⋅⋅
⋅⋅−

µAmin
ln 31

. 

In the process of moisture microconcentrations measurement the analyzed gas is continuously 
passed through the coulometric cell CEC2 in the direction indicated by arrows. The analyzed gas flow 
Q2 is maintained on a strictly constant level. 

The cell’s electrodes are connected to the direct current power supply PS1 with the applied voltage 
exceeding the moisture decomposition potential. This ensures the electrolysis of moisture 
simultaneously with its adsorption, which provides the conditions for uninterrupted electrolytic 
regeneration of phosphorus pentoxide. 
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The electrolysis current is measured by the microammeter AM1 installed into the current circuit. 
Following reactions occur as the result of the moisture sorption from the analyzed gas flow and its 
electrolysis in the sorbent foil: 

ОНхОРОНхОР 252252 ⋅⋅→⋅+ .    (17) 

2252252 2
ОхНхОРОНхОР ⋅+⋅⋅→⋅+ ,    (18) 

where х – coefficient proportional to the amount of the abstracted moisture. 
If the moisture microconcentrations in the analyzed gas are constant in stable conditions, balance 

is established between the processes (17) and (18). The Faraday’s law describes the relation between 
the amount of substance generated on the electrodes in the electrolysis process and the quantity of 
electricity spend for it; according to this law, the current measured with the microammeter AM1 
makes it possible to establish the moisture concentration in the analyzed gas. The following Equation 
describes the relation between the current and the moisture concentration: 

( )
PQ

tIВ ОН ⋅
+⋅

=
2

15,273q
2

,     (19) 

where 
ОНB

2
 – moisture concentration in the analyzed gas, mln-1; I – electrolysis current, µA;  

Q2 – analyzed gas flow in the measurement channel (for measurement conditions), cm3/min. 

6. Measurement error 
The basic reduced measurement error of the coulometric analysis method described in Figure 2 is 
defined by the volume ratio of the molecular impurity (oxygen, hydrogen or water) ХП and is 
calculated according to the following formula using control gas mixtures (CGM): 

,100
П

ПП

П Х

ХХ

Х0
×

−
=

П
ВВ ПГСГγ

     (20)
 

where γ
ПХ0
– basic reduced measurement error for the molecular impurity ХП, % ; 

 
ПХГВ – gas analyzer readings ХП, mln-1; 

ПХПГСВ – volume ratio of the molecular impurity ХП in the 
CGM, mln-1; 

ПХП – measurement range for the molecular impurity type ХП, mln-1. 
Experiments show that the basic reduced measurement error for the molecular impurity ХП in inert 

gases for measurements ranging from 0 to 5, …50 and …500 mln-1 of oxygen totals 6, 3.8 and 2.8 % 
respectively. Similarly, measurement error totals respectively 8, 3 and 3.8 % for hydrogen, and 
respectively 6, 3 and 3 % for water. 

7. Conclusion 
Study of the coulometric method of measuring concentrations of oxygen, hydrogen and moisture 
molecular impurities in inert gas environment by passing the analyzed gas through several electrolyte 
cells demonstrates the technical possibility and high efficiency of registering the impurities. 
Technological improvement in the manufacture of the coulometric solid electrolyte cell results in 
wider measurement range of oxygen and hydrogen microconcentrations. The basic reduced 
measurement error of molecular impurities in inert gases for measurements ranging 0–5–50–500 mln-1 
does not exceed 8–6–3 % respectively.  
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