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Abstract. Current investigation presents the use of Friction Stir Processing (FSP) to improve 

the corrosion resistance of pure magnesium for biomedical applications. FSP has been used to 

incorporate hydroxyapetite (HAP) into Mg-surface so as to modify the chemical composition. 

FSP was done within a matrix of different parameters and conditions. Influence of various 

parameters on microstructure was also clearly observed. XRD analysis confirmed the presence 

of HAP, whereas SEM images revealed a uniform distribution of the imbedded phase. Micro-

hardness and in-vitro corrosion studies were also performed. Influence of grain size on 

hardness was validated by Hall-Petch relationship. Corrosion behavior was explained on the 

basis of texture, which indicated better corrosion resistance in comparison to the pure Mg. 

Therefore, the study reveals that the proposed FSP methodology can be useful tool to improve 

mechanical and corrosion properties of pure Mg for biomedical applications. 

1. Introduction 

Biodegradable metals and alloys are being considered as the second generation of biomaterials. In this 

context, due to its close resemblance with the human bone in terms of mechanical properties, Mg has 

the potential to be amongst one of the best materials, which can be incorporated in human body. 

However, its rapid degradation is still a matter of serious concern. Many researchers [1-2] have been 

trying to address the problems pertaining to hydrogen evolution and high corrosion rates of Mg 

implants. According to literature [3], Mg implants are being widely used as cardiovascular stents, 

fixation plates etc. Due to the fact that, the properties of Mg can be engineered easily, it is highly 

beneficial to use it for customized biomedical applications. In this context, (FSP) approach has been 

chosen, which is a solid state process wherein the material is subjected to intense plastic deformation 

by a rotating tool. This in turn refines the grain structure of the metal/alloy by re-crystallization. In the 

recent past, agglomeration and uneven distribution of HAP powder in pure Mg during friction stir 

processing, have been identified as the key problems to be addressed [4-5]. It has been concluded that 

by playing with the FSP parameters and conditions, and/or by using various tool shapes, one can 

achieve the desired grain size and uniform distribution of secondary phase in the processed metal [6]. 

Mishra et al [7] in a review article, laid emphasis on mechanisms responsible for microstructural 

refinement, and effects of FSW/FSP parameters on resultant microstructure and final mechanical 

properties. Kang et al [8] reported, that grain refinement, homogeneity as well as porosity free 

microstructure can be achieved by FSP. Although literature reports various techniques other than FSP, 

such as laser cladding for improving wear and corrosion resistance properties of magnesium and its 

alloys, however cost and time are the important factors which are compromised [9]. There are some 

attempts to use cold spray technology also to modify the Mg-surfaces, for example depositing 

aluminum cold spray coatings on Mg-substrates, however premature corrosion and toxicity of 

aluminum poses a serious threat to use Al in human body [10]. Gray and Luan [11] in their review 



2

‘’“”

1234567890

ICIEM 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 284 (2017) 012026 doi:10.1088/1757-899X/284/1/012026

articles, have concluded that various other surface coating techniques such as electrochemical plating 

(electroplating), conversion coatings, anodising, hybrid coatings, microarc oxidation and vapour-phase 

processes, have been considered for Mg alloys. All these surface modifications are either giving 

moderate corrosion resistance or slight changes in hardness, due to this fact they are not suitable for 

use in biomedical applications. Few researchers have tried to add TiC nanoparticles to magnesium 

alloy for strength and ductility enhancement and reported changes in microstructure which  led to 

enhancement of tensile properties [12]. Although FSP alone can have significant effect on grain 

refinement, wear resistance, hardness, mechanical behavior of Mg alloys, however standalone Mg is 

not suitable for body implants, due to poor electrochemical performance. Thus comes an idea of 

incorporation of Hydroxyapatite (HA) particles (Ca5(PO4)3(OH)) into the metal. An extensive review 

of the microstructural evolution during FSP and the effects of processing parameters is available [13]. 

It is largely accepted that dynamic recrystallization (DRX) governs grain refinement in FSP [14-17], 

although there is still a debate over the exact mechanisms that govern the resultant microstructure. 

Taking the advantage of available literature and research findings. FSP with a novel method of 

incorporating secondary phase has been used in this study. 

2. Experimental details 

Commercially pure magnesium ingot (Purity 99.9%) purchased from National Aerospace Laboratory 

Bangalore (India) was used as base material in this study. Hydroxyapatite powder (HA) was used as 

reinforcement to make a composite layer via FSP route. The HA was purchased from Sigma Aldrich 

with particle size in the range 25–60 μm . Fig. 1 & 2 show XRD analysis of pure magnesium and HA 

powder respectively. 

 
      Figure 1. XRD analysis of pure magnesium.            Figure 2. XRD analysis of HAP powder. 

                

Three samples coupons (80 × 40 × 6 mm) of magnesium were cut by Abrasive Jet Cutter (Make: 

Chennai Metco; Model: Bainmount; India) for FSP. During FSP, the sample was fixed in FSP fixture, 

as shown in Fig.3. A conical shaped tool made from stainless steel of grade 202 was used for FSP. The 

tool had threads on its pin with shoulder diameter of 18mm, a tool-tip length 3 mm (Fig. 3). An 

improved material flow takes place in the samples processed with the tool consisting of a threaded pin 

due to downward movement of the material [18-19]. The workpieces were friction stir processed 

(FSPed) using 1 pass under constant rotational (w) and traverse (v) speeds of 2000 rpm and 60 

mm/min respectively. The samples have been designated as per the nomenclature given in Table 1. 
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Table 1. Nomenclature of samples used in this study. 

Designation  Description of processing 

Mg  As-cast pure Magnesium without FSP 

F-Mg  As-cast Magnesium subjected to FSP 

F-Mg-H  As-cast Magnesium subjected to FSP 

with HAP as re-inforcements 

                                

 
Figure 3. Schematic of fixture to hold Mg                               Figure 4. Sketch of conical tool used for 

pieces for friction stir processing.                                                friction stir processing of Mg. 

                               

To address the problems of agglomeration and non-uniform distribution of HAP powder in Mg 

substrate, a novel approach to fill HAP powder inside the sample has been proposed and utilized. A 

hole was drilled (vertically-2.5mm dia) throughout the length of the coupon, in which HAP powder 

(0.01% vol fraction was filled). Both sides of the hole were sealed by using a suitable fastener. This 

method of injection resulted in nearly zero wastage of powder, which is usually not achievable in any 

other methods of filling reinforcements during FSP. Fig. 5 shows the schematic illustration of the 

approach used for FSP. 
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Figure 5. Schematic illustration of the complete FSP process, used to make Mg- composites 

reinforced with hydroxyapetite. 

For the analysis of microstructure and  mechanical properties, the FSPed samples were sectioned and 

mounted in transoptic powder at a hot mounting machine (Make: Chennai Metco; Model: Bainmount; 

India). Mirror polishing of the mounted samples was done by using standard metallographic procedure. 

For optical microscopy, etching was done with a solution consisting of 2.5 ml acetic acid, 1.5 ml picric 

acid, 2.5 ml acetic acid, 15 ml water and 50 ml ethanol. The cross-sections were examined using a 

Leica Microscope (Make: Leica Microsystems; Model: MEF4M; Germany) optical microscope. 

Subsequently, micro hardness measurements were made using a Hardness Tester (Make: Wilson 

Instruments; Model: 402 MVD; USA). Vickers indentor with a test force of 1 Kg and dwell time of 15 

seconds was used. X-ray diffraction (XRD) analysis of FSPed samples was carried out using a 

PANalytical X-Pert Pro machine (Make: PANalytical; Model: X-Pert Pro; The Netherlands). All the 

XRD scans were carried out with a step size of 0.04° (2θ) and a sampling time of 3 s per step in 2θ 

range of 0° -180°. Scanning electron microscope (SEM), (Make: Jeol; Model: JSM6610LV; USA) 

equipped with energy dispersive spectroscopy, EDS (Make: Oxford, Model: INCAX-Act, USA) was 

used to characterize morphology and composition of the sectioned samples. 

An Electrochemical Cell (Make: Gamry; Model: PTC1; USA) was used to perform in-vitro 

potentiodynamic studies, of three standard electrode configurations; Calomel electrode as reference 

electrode, Graphite electrode as counter electrode and test specimen as working electrodes. Mg, F-Mg 

and F-Mg-H samples were subjected to potentiodynamic polarization after 1 hr and 25 hr immersion 

in the Hank‘s solution, to stabilize the corrosion rate. The scan rate was 0.1mV/s and applied potential 

was varied  ± 0.25 V about the open circuit potential. Initial delay of 1800 seconds was given for each 

sample before performing the potentiodynamic test. The obtained data was analyzed by Gamry 

Analyst software. All the tests were performed three times under ambient condition of room 

temperature (25±1°C) and relative humidity (55±5%). 

3. Results and discussion 

The initial micro structure of the Mg samples comprises large coarse grains with the  average grain 

size of 820 μm (Fig. 6-a). Whereas the microstructure of F-Mg (Fig. 6-b) consists of homogenous and 

refined grains of about 150 μm average size, which could be attributed to dynamic re-crystallization 

[20-21]. The interface is shown in (Fig. 6-b) where the refinement is seen. With the rise in temperature 

and stirring effect while doing FSP finer grains are formed. In the third case, the microstructure of F-

Mg–H composites got refined intensely, which is not possible to be revealed by OM (Fig. 6-c). 
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Figure 6. Cross-sectional optical micrographs of Mg-based  surface composites fabricated by single 

pass of FSP at 2000 r.p.m with a traverse speed of 60 mm/min (a) Mg (b) F-Mg (c) F-Mg-H 

 

The XRD analysis of all the samples is shown in Fig.7. which reveals the presence of Mg as the main 

phase in all the three cases. In F-Mg no oxidation took place which is a positive attribute. In case of F-

Mg-H, elements such as  magnesium, phosphorus, calcium and oxygen alongwith additional phases 

such as calcium phosphate and magnesium phosphate have also been found, which shows the presence 

of HAP  in the sample.   

 
Figure 7. X-Ray diffraction of Mg-based  surface composites fabricated by single pass of FSP at 2000 

r.p.m with a traverse speed of 60 mm/min. 

 

The cross-sectional SEM micrographs of F-Mg-H samples at different locations are shown in Fig.8, 

whereas Fig.9 shows the EDS maps of different elements. All the HAP particles are well distributed 

with the re-crystallized Mg after FSP. This can be attributed to the nature of FSP which forms the 

composite in solid state itself. Wherein it would have been very difficult to produce composites of Mg 

with HAP, due to the difference in the melting points of both materials. The element distribution of 

Mg and HAP particles are clearly seen in Fig. 9. The reinforced particles are dispersed and distributed 

evenly all over Mg matrix. There is no evidence, during the study, to report presence of clusters, 

(a) (b) (c) 
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agglomeration or element rich zones throughout the sample surface. Typical dispersion of HAP 

particles in the surface composites, ranging from 10-25μ has been recorded. The variation in element 

distribution in the figure is minimum, which leads to validation of homogenous distribution. 

 

   
(a)                                            (b)                                              (c) 

Figure 8. Cross-sectional scanning electron micrographs of Mg-alloy reinforced with HAP by single 

pass of friction- stir processing at 2000 r.p.m with a traverse speed of 60 mm/min, showing particle 

distribution at different locations. 

 

 

 

Figure 9. EDS maps of  Mg-alloy reinforced with HAP by single pass of friction- stir processing at 

2000 r.p.m with a traverse speed of 60 mm/min, showing presence of phosphorous, oxygen, 

magnesium and calcium after FSP. 
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The cross-sectional micro-hardness versus distance from the FSP zone- base material interface plots 

are shown in Fig. 10. The effect of tool rotational speed on the microstructure discussed by various 

researchers was verified in terms of getting very low surface hardness due to very high heat 

generations, due to high speeds and prolonged area of contact, which led to grain growth. But 

eventually when the tool traverse speed was increased it resulted in lower grain size and this higher 

hardness, which can be observed from the plots of three samples that the variation in micro-hardness is 

marginal in the base material regions for all the three samples. Higher values of micro-hardness in the 

heat affected zone (i.e. -25 to +25) were reported for all samples except non-FSPed pure Mg. Whereas 

as we approach towards the FSP region hardness starts increasing, becomes maximum at a point and 

then starts decreasing as we move towards the other side of FSP zone. The reason for high hardness in 

the centre is due to high temperatures in that region which results in dynamic re-crystallization (DRX) 

and lower hardness on the outer peripheries attributes to larger grain size in that region (due to lower 

temperature than that in the center) which is in accordance to the Hall–Petch relationship, which states 

that hardness is inversely proportional to (grain size)
1/2

.The hardness values for all of the Mg/HAP 

surface composites have narrow distribution ranges, indicating a homogeneous distribution of the 

HAP phase in the Mg matrix.  The average micro-hardness of all the three samples is tabulated below.  

 

Table 1. Average cross-sectional micro hardness of Mg-alloy reinforced with HAP by single pass of 

friction- stir processing at 2000 r.p.m with a traverse speed of 60 mm/min. 

Sr. No. Sample Hardness   

(HV) 

1 Mg 36±5% 

2 F-Mg 43±5% 

3 F-Mg-HAP 47±5% 

              

 

Figure 10. Variation in microhardness along the cross-section of Mg-alloy subjected to Friction Stir 

Processing (FSP) at 2000 r.p.m with a traverse speed of 60 mm/min. 

 

During the in-vitro corrosion studies, the initial immersion results (Table 2) show equilibrium 

potential and corrosion rate for Mg, F-Mg and F-Mg-H samples for initial stage i.e 0 hours and after 
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25 hours. Initial corrosion rates for F-Mg-H (393.9 mpy) were greater than Mg (304.1 mpy), but after 

25 hours F-Mg-H (122.9 mpy) shows best corrosion resistant properties, while the F-Mg (304.1 mpy 

at initial stage and 1529 mpy at 25 hr) shows highest corrosion rates for all time of immersion, which 

can be attributed to the grain refinement and increased number of grain boundaries. During initial 

hours of immersion the HAP particles act as cathodic sites on the F-Mg-H surface as a result micro-

galvanic coupling occurs between the Mg matrix and HAP particles, similar behavior of micro 

galvanic coupling has been explained by Song et al [22] for the AZ91 Mg alloy where β particles 

(Mg17Al12) act as cathodic sites and Mg matrix act as anodic. As reported by Ralston et al [23] grain 

size of Mg and secondary phase has great significance on corrosion resistance therefore we have 

reported different corrosion resistances with the  explanation of the fact that, due to ―dislocation 

rearrangements‖ which results due to grain growth after dynamic re-crystallization [24]. 

 

Table 2. Equilibrium potential and corrosion rates of Mg-alloy subjected to Friction Stir Processing 

(FSP) at 2000 r.p.m with a traverse speed of 60 mm/min. 

  Time 0 hr (Initial) 25 hr (Final) 

Sample Mg F-Mg F-Mg-H Mg F-Mg F-Mg-H 

Equilibrium 

Potential (Vs 

SCE)V 

-1.541 -1.565 -1.564 -1.592 -1.530 -1.546 

Corrosion 

rate (mpy) 

304.1 367.7 393.9 165.5 1529 122.9 

Icorr A/cm
2
 349.8e-6 423.0e-6 453.1e-6 190.3e-6 1.759e-3 141.4e-3 

Beta 

Cathode 

364.9e-3 325.4e-3 349.5e-3 310.4e-4 377.7e-3 288.9e-3 

4. Conclusion 

 A corrosion resistant, reinforced Mg composite has been developed via FSP route. With the novel 

approach in the method of introduction of secondary phase into the Mg has given us positive 

satisfactory results in terms of uniform distribution of HAP particle into Mg matrix. Improvements in 

perfect agreement with Hall-Petch relationship were observed which lead to enhancement in 

mechanical and electrochemical properties. Significant grain refinement has been done, the average 

grain size has been reduced to 150 μm from 820 μm. Even the hardness of the parent metal has been 

increased from 36 Hv to 46 Hv, which is attributed to the grain size reduction. Initial corrosion rates 

for F-Mg-H were greater than Mg but after 25 hours F-Mg-H shows best corrosion resistant properties 

while the F-Mg (304.1 mpy at initial stage and 1529 mpy at 25hr) shows highest corrosion rates for all 

time of immersion which can be attributed to the grain refinement and increased number of grain 

boundaries. FSP combined with innovative ways of incorporation secondary phase in Mg matrix is an 

effective way to enhance the electrochemical and mechanical properties of pure Mg. These results are 

of great technological importance since FSP processing can be chosen as a cost effective way to 

produce composites with adjustable properties. 
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