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Abstract. This paper put forward a new method of technical characteristics deployment based 
on Reliability Function Deployment (RFD) by analysing the advantages and shortages of 
related research works on mechanical reliability design. The matrix decomposition structure of 
RFD was used to describe the correlative relation between failure mechanisms, soft failures 
and hard failures. By considering the correlation of multiple failure modes, the reliability loss 
of one failure mode to the whole part was defined, and a calculation and analysis model for 
reliability loss was presented. According to the reliability loss, the reliability index value of the 
whole part was allocated to each failure mode. On the basis of the deployment of reliability 
index value, the inverse reliability method was employed to acquire the values of technology 
characteristics. The feasibility and validity of proposed method were illustrated by a 
development case of machining centre’s transmission system. 

1. Introduction 
The cause of the failure for mechanical parts simultaneously comes from the failure mechanisms [1-3], 
the soft failures and the hard failures, just like wear degradation, corrosion, fatigue, fracture, overload 
and so on. Failure modes can be divided into soft failures and hard failures. There are complicated 
correlative relations between failure mechanisms and failure progresses, interlocking failures from one 
part may show a network spreading phenomenon just like the spreading of failures in 
electromechanical system [4]. For a long time, due to lacking of effective tools for descripting and 
analysing the complicated relations above, there is a disconnect between reliability design and 
performance design, that makes deployment values of design parameters cannot guarantee the 
reliability of products. 

Reliability design is closely related to uncertain factors, the design method rely on probability was 
widely used in mechanical reliability design after the general method first/second-order reliability was 
put forward [5, 6]. The stress-intensity interfere model based on probability[7] is a reliability design 
method which is general used at present time, researchers have made a lot of studies on the method for 
calculating the reliability of parts and systems. However, in practical application, the analysing tools 
like FTA, FMEA/FMECA[8-10] and so on which are used in the stress-intensity interfere model have 
their limitations such as the expression is not rigorous, lack of consistency and they only consider 
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single failure mode, especially not considering the correlations between failure modes[11]. Meanwhile 
the method above is only for the main failure mode for probability design, which ignores the 
correlation between multiple failure modes. That makes it unreasonable. 

In the nineties of the 20th century, the concept of reliability function deployment (RFD) emerged, 
it makes up the lack of QFD technology[12] in product planning with considering the product failures 
and their impact[13]. The article [14] makes qualitative and quantitative description, analysis for the 
fault propagation path and trend between components using the domino matrix in RFD, and improves 
the traditional reliability deployment method based on it. It can be found the advantage of RFD is that 
it converts the reliability analysis method from filling in the forms to analysing the matrix structure 
correlation, controlling product reliability from top to bottom using the method of decomposing 
matrixes. RFD’s matrix structure can indicate different processing level for the system complexity, the 
description for the relation between design factors is clearer and more concise. Meanwhile, RFD 
process also can use the numeric operations and normalization method existing in QFD for numerical 
operation. So using RFD matrix structure to describe correlations of failure mechanisms and failure 
modes has the advantages of tight expression and convenient calculation, and it can effectively 
evaluate and calculate the interrelated effect of multiple failure modes. 

In summary, this paper, which is aiming at overcoming the limitation of traditional method, puts 
forward a comprehensive deployment method for technical characteristics considering the interrelated 
and coupled relations between failure modes. First, build a reliability deployment space for failure 
modes which is made up with houses of reliability. Second, comprehensive considering the 
interrelation between failure modes, the total reliability index value is decomposed and allocated to 
failure modes of the part. Next, establish a connection equation or limit state equation, build the 
technical characteristics deployment space, solve the design parameters of technical characteristics 
using the inverse reliability method [15, 16]. Last, considering interrelated effect of design parameters 
of parts, the deployment design parameters are imported into the space for matching design parameters 
and weakening conflicts, output the final deployment value. 

2. Build the house of reliability and synthetically allocating the technical characteristics 
In order to considering the correlative effects of different failure modes, the house of reliability will be 
established. And through complex processes, the reliability index of one part or component will be 
allocating to the design parameters finally. 

2.1. 2.1 Build the house of reliability for failure modes 
The relation of failure mechanisms, hard failures and soft failures is shown in figure 1. It can be found 
that there are complex relationships between failure modes and failure mechanisms. Meanwhile it can 
be concluded that the reliability losses caused by different failure modes are different. 

 
Figure 1. The relation between failure mechanism, hard failure and soft failure 

This paper only establishes the failure mode reliability deployment house according to some main 
failure mechanisms. The reliability deployment house consists of three matrices: 
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(a) Relationship matrix between failure mechanism and failure mode of parts, { }ijuU . 

The element iju  expresses the relationship between failure mechanisms and soft and hard failure 

modes. In this paper, the assessment value of iju  is divided into weak, medium and strong three 
grades, respectively take the integer 1, 3 and 9. 

(b) Failure mode autocorrelation matrix, { }ijpP . 

The element ijp  represents the correlation coefficient between failure mode ip  and jp  on the 
same component. 

(c) Reliability loss weight matrix of failure mechanisms, { }iwW . 
The element iw  represents the magnitude of the loss of reliability caused by failure mechanism i, it 
can be obtained by the evaluator according to the relevant reliability statistics. The weight is expressed 
by integers 1 to 9, according to the reliability loss from small to large. 

2.2 Comprehensive deployment process for technical characteristics 
According to the basic principles of RFD, and considering the interaction of the design value of 
technical characteristics. The whole process can be divided into the following three stages: 
(a) First phase, on the basis of product reliability allocation and FMECA analysis, the failure mode 
reliability allocation of each component is established to construct the failure mode reliability 
deployment space. And the reliability loss of each failure mode is calculated with the matrix structure 
of the failure mode reliability deployment house of each component. According to the size of the 
reliability loss, the reliability index values are assigned to the failure modes of the component, and 
output the main failure mechanisms corresponding to each failure mode. 
(b) Second phase, input the results of the first phase, the comprehensive deployment space of the 
technical characteristics of each part was established. In this space, the connection equation or the 
limit state equation is established for the main failure modes of each component according to its main 
failure mechanisms, and the design parameter value can be found. 
(c) Third phase, input the result of the second phase, and the matching and conflict resolution space 
for design parameters is established. In this space, according to certain rules, the deployment design 
parameters of each part are matched and resolved conflicts, and get the final design parameter 
deployment value. 
The above configuration process is integrated with the RFD theory, inverse reliability method based 
on probabilistic design and the conflict resolution technique, and the reliability design process of 
mechanical parts is integrated into staged data processing and calculation process. By using the matrix 
decomposition structure of RFD method, the reliability index of part is further allocated to various 
failure modes, finally, the inverse reliability method is used to establish the mapping relationship 
between reliability index and mechanical component design parameter, which makes the reliability 
design and performance design of mechanical parts more closely integrated, so the process are 
systematic, hierarchical and practical. 

3. Mathematical model for allocating technical characteristics based on multi-failure modes 
correlation 
After the total reliability of product is allocated to components, if the distribution of stress and 
intensity is known, the reliability index β  corresponding to the reliability value of components can be 
obtained by looking up tables. β  is used as the input of the failure mode reliability deployment space, 
the relationship matrix between failure mechanisms and fail modes will be established, the reliability 
loss of each failure mode will be assessed with considering of the impact of the correlation between 
failure modes. Then according to the size of the loss of reliability, the total reliability index β  of the 
component will be allocated to failure modes. 
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If a failure mode i is independent, the causing reliability loss is iFL , there is 

 i j ijFL w u=  (1) 

jw  is reliability loss weight of failure mechanism j  corresponding with the failure mode i ; iju  is the 
correlation coefficient between failure mode i  and failure mechanism j . 
Suppose soft failure mode i  directly leads to k  association failures (1, 2, , )k m=   corresponding to 
t  failure mechanisms (1,2, , )t m=  , considering the single layer chain effect, the calculating 
equation for reliability loss of failure mode i  can be obtained. 

 
1
1

m

i i ij ik t kt
k
t

FL w u p w u
=
=

= ⋅ + ⋅ ⋅∑
 (2) 

Where, 1,ikp i k= ∀ = ; ikp  is the probability that soft failure mode i  raises the associated failure 

mode k ; tw  is the reliability loss weight of failure mechanism t corresponding to failure mode k; ktu  
is the correlation coefficient between failure mode k and failure mechanism t. 
Considering the matrix structure of the house of reliability, and considering the propagation effects of 
multilayer failure modes, equation (2) can be expressed in the form of matrices 

 ( )( )2 1T f
mn

  = + + + −   FL W U P P P I
 (3) 

1,ikp i k= ∀ = ; FL  is 1 m×  reliability loss vector; P is 1 m×  autocorrelation matrix; W  is 1n×  
weight column vector; W  is n m×  relation matrix. f  is the layer of the failure chain. 

It can be seen from equation (3) that the longer the failure chain is, the greater the accumulated 
reliability loss is, for a failure mode which is the initiator of the failure chain. The reliability index 
allocation coefficient can be acquired by normalizing the obtained reliability loss of failure modes as 
shown in equation (4). The greater the reliability loss of failure mode is, the larger the reliability index 
allocation coefficient is. 
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∑  (4) 

Where 0iFL  represents the loss of reliability when the correlation of failure modes is not be considered,
s  is the number of failure modes that constitute the propagation chain, the deployment value 

*
iβ  of 

reliability index for each failure mode can be calculate by equation (5) 

 β= ⋅*
i iβ α   (5) 

β  is the reliability index of the whole part. According to the information of HOR, the main failure 

mechanisms corresponding to 
*
iβ  can be obtained, the 

*
iβ  and the corresponding main failure 

mechanisms are input into the technical characteristics deployment space, and then deploy the 
technical characteristic values using the inverse reliability method. 
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4. Case study 
In this paper, a spline shaft in the driving system of one vertical machining centre is selected as an 
example. Through the analysis of the failure data of the machining centre collected from August 2008 
to December 2009 and the FMECA, the corresponding house of reliability of the failure modes and 
house for allocating technical characteristics of the components can be established. 

Known conditions of the spline shaft: the transmitting torque: =9500T N m , Tσ  =400N·m. The 
bending moment of dangerous section is 5710N·m, Mσ =250N·m. The shaft material is 45 steel 

quenched and tempered, material strength is Sµ =600MPa, Sσ =60MPa. The shaft is subjected to 
stable cyclic strain, the reliability of the spline shaft during 1000h operation is R= 0.993688. It is 
assumed that the stress and strength distribution of the spline shaft are normal distribution, and the 
reliability index value of spline shaft can be obtained by looking up the table: β  =2.49. 

4.1 Build the house of reliability for failure modes of spline drive shaft 
The 8 failure modes of the spline shaft are obtained by FMECA, and the house of reliability of the 
spline shaft failure modes is established as shown in figure 2. 

 
Figure 2. The house of reliability for spline shaft failure modes 
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HoR assigns the reliability index value β  =2.49 to the failure modes through matrix operation, and 

finally output the deployment value 
*

jβ  of failure modes reliability index and the corresponding main 
failure mechanisms. 

The relationship between the failure mechanisms of the spline shaft and the soft and hard failure 
modes can be clearly expressed in the n m×  matrix, which is shown in figure 2. In the two-
dimensional plane of autocorrelation matrix, there are following propagation paths: 
(a) Fatigue crack → Spline shaft crack 
(b) Fatigue crack → Surface pitting → Spline shaft crack 
(c) Spline wear → Surface pitting → Spline shaft crack 
(d) Spline wear → Large transmission error 
(e) Torsional stiffness → Plastic deformation → Large transmission error 
In the above failure paths, the maximum order of cascading failure modes is f = 2. Using the equation 
(4) to calculate the reliability loss FL  of each failure mode under the consideration of correlations, it 
can be found that the three failure modes: fatigue crack, torsional stiffness, and spline wear have a 
greater increase for loss of reliability. 

4.2 Technical characteristics integrated deployment for spline shaft 
According to the output of reliability deployment house of the spline shaft, it can be found that the 
fatigue crack and spline wear make greater loss to reliability of spline shaft, and the spline shaft 
diameter d  and the life for wear of spline shaft t  are the corresponding design parameters. Therefore, 
this paper established the connection equation for failure modes fatigue crack and wear of the spline 
transmission shaft, solved the deployment value of corresponding design parameters using the inverse 
reliability method. 

4.2.1 Technical characteristics deployment of reliability for fatigue crack 
In this case, the area which is easy to form fatigue crack is the spline. Due to the specific parameters of 
the spline shaft (such as the number of teeth, diameter, minor diameter, etc.) is not determined, the 
average diameter of the spline part d  is chosen as the deployment parameter. 
The limit state equation can be expressed as 

 

1
2 2 2

3
2

32( ) ( )G X S s S M T
d

α
π

= − = − +
 (6) 

Where the α  represents the coefficient of the type of the cyclic stress. According to 3σ  law, the 
strength limit of the material is 600 180MPaδ = ± , min 420S MPaδ= = .The shaft is rotated in one 
direction and thus subjected to pulsating cyclic stresses, =0.6α . 

Known conditions: 400T N mδ = ⋅ , 250m N mσ = ⋅ , 
* 2.84β = . The mean value of M and T is the 

initial value for iteration, 
*

0 9500T N m= ⋅ , 
*

0 5710M N m= ⋅ , take the shaft diameter 
* 200d mm=  as 

initial value for iteration, repeat the iteration until the calculated value of the shaft diameter meets the 
condition of convergence, finally get the deployment value of shaft diameter is 199.7204mm. 

Table 1 is a comparison of the calculated results with traditional probabilistic design method and 
the probabilistic design method considering multiple failure modes. It can be found that due to 
considering the extra reliability loss caused by the correlation of failure modes, deployment value of 
shaft diameter increase from 187.8311mm to 199.7204mm, increased by 6.2%. 
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Table 1. Comparison of calculation results(unit: shaft diameter-mm) 

 
 Allocation Method 

 Traditional Probabilistic 
Design 

Probabilistic Design for 
Multiple Failure Modes 

Original Reliability R 0.993688 0.993688 
Original Reliability Index β  2.49 2.49 
Allocation Coefficient of 

Reliability Index iα  1 1.14 

Allocation Value of 
Reliability Index 

*β  2.49 2.84 

Shaft Diameter d 187.8311 199.7204 

4.2.2 Reliability technical characteristics deployment for wear failure 
Through the same method, the wear life of the spline shaft was calculated. The wear life declines from 
331h  with traditional probabilistic design method to 318h , reduced by 3.8%. 

5. Conclusion 
This paper proposed a comprehensive deployment method for reliability technical characteristics 
based on the correlation analysis of multiple failure modes. This method used the matrix structure to 
describe the transmission relationship among failure mechanisms. And a mathematical model 
calculating the reliability loss of each failure mode was established with considering the correlation 
between them. The reliability losses were normalized to obtain reliability index coefficient of each 
failure mode, established the technical characteristics deployment space and finally assigned reliability 
index to failure modes. The inverse reliability method was introduced to the calculation model for 
technical characteristics to do the comprehensive deployment for the technical characteristic. And the 
method was applied to the reliability design of the spline shaft in the transmission system of a 
machining centre, the example shows that the method can effectively adjust and optimize the results of 
the conventional probabilistic design. The following research will focus on the matching of design 
parameters and conflict resolution, as well as the corresponding algorithm implementation. 
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